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Background
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Extended Reality (XR)

Virtual Reality (VR) Augmented Reality (AR) Mixed Reality (MR)

Brings users to a fully 

simulated and isolated world

Combines the real and virtual 

worlds by overlaying digital 

content onto a dedicated 

device

Similar to AR, but things 

happening in the physical 

world can affect the virtual 

world

Video source: The differences between AR, VR & MR (https://www.youtube.com/watch?v=IFgGzOpjlUM)
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https://www.youtube.com/watch?v=IFgGzOpjlUM


Background
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Motivation
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Software testing

Non-XR software XR (AR and MR) software

1. Use DFS to go through every function

2. Perform unit tests automatically

1. Design and construct various physical 

environments

2. Test all functions within each 

environment

3. Analyze the recordings manually to 

check for guideline violation

Can we also automate XR testing?

Term 1
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Motivation (by comparing related work)
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Non-playable scene Playable scene

A unified mesh → not physically correct Interactable with individual objects
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InstructScene, ICCV 2024

Holodeck, CVPR 2024



Motivation (by comparing related work)
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• Scene graph: node as object, edge as relation

Image source: InstructScene

➢ Categorical nodes, 𝑜 ∈ 1, … , 𝐾𝑜

➢ Categorical edges, 𝑟 ∈ 1, … , 𝐾𝑟

𝐾𝑜, 𝐾𝑟 are predefined!

1. Scene-specific, not flexible and practical for XR testing

2. Cannot accurately describe all relations



Motivation (by comparing related work)
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We need a structure that is:

1. Human-understandable: for explainability and modifiability

2. Unambiguous: all (physically) possible relations in a scene can be modeled

3. Flexible: able to generate a diverse set of scenes



Methodology – ScenethesisLang

• Domain-specific language (DSL)

• Describes diverse, realistic, and physically plausible 3D scenes

• Focuses on expressiveness, human-readability, generative capability, and physical 

plausibility
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Methodology – ScenethesisLang
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Methodology – ScenethesisLang
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• Scene type: overall nature of the environment (indoor/outdoor)

• Scene description: textual description of the scene



Methodology – ScenethesisLang
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• Region: spatial subdivision within a scene (e.g., room, outdoor area)

• An outdoor area is defined as the bottom shape (from bird’s-eye view)

of a prism with infinite height.

Wall? Ceiling?



Methodology – ScenethesisLang
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• Object: entity within a region



Methodology – ScenethesisLang
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• Object: entity within a region



Methodology – ScenethesisLang
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• Connection: spatial relationship between two regions



Methodology – ScenethesisLang
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• Constraint: requirement that ensures physical plausibility or

reasonableness, or that meets user-defined specifications



Methodology – ScenethesisLang
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• Probabilistic parameter: ranges or distributions for attributes such as

object positions



Methodology – Scenethesis
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: LLM



Methodology – Scenethesis
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• Scene Analysis Module: enhances the overall understanding of the desired scene

• Purpose of existence

• Example objects

• Expected human activities

• Overall atmosphere

Must 

obey!



Methodology – Scenethesis
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• Scene Conceptualization Module: creates a semantic draft of the desired scene

• Semantic: only text is outputted

3 prompts per region:

1. Names of all objects

2. Relationships

3. Attributes

𝑞𝑜: A 3D object of a {category} 

named {name} ({description})

• Purpose of existence

• Example objects

• Expected human activities

• Overall atmosphere



Methodology – Scenethesis
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• Region Construction Module: constructs the actual boundaries of each region

Shape parser



Methodology – Scenethesis
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• Object Placement Module: places selected objects to their optimal position with optimal 

orientation

Constraint solver
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Demo
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Experiments – Implementation

• Materials and objects are from Holodeck

• 𝛼 = 100, 𝛽 = 1

• LLM: gpt-4o-2024-08-06

• Temperature: 0

• Machine: MacBook Pro (M1 Pro CPU, 16 GB RAM)

• Mean execution time (before launching Blender and Unity): 2.5 minutes
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Experiments – Evaluation Metrics

• Quantitative:

• ScoreCLIP 𝑟, 𝑞 = CLIP 𝑟, 𝑞 + 1  ×  50

• 𝑞1: “an image of a vibrant indoor scene”

• 𝑞2: user prompt

• 𝑞3: generated scene description

• ScoreSBERT 𝑑, 𝑝 = SBERT 𝑑, 𝑝 + 1  ×  50

• 𝑑 is the scene description, 𝑝 is the user prompt
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Wireframe rendering 𝑟:

Pitch ∈ 0, 30, 45, 60, 90
Yaw ∈ 0, 15, … , 330, 345



Experiments – Evaluation Metrics

• Qualitative:

• We give the bird’s-eye view to GPT-4o and ask:

1. Does the generated scene contain every region mentioned

in the prompt?

2. Does the generated scene contain every object mentioned

in the prompt?

3. Is the generated scene physically plausible (e.g., are there any objects colliding 

with region boundaries or other objects)?

4. Is the generated scene visually pleasing?

• Then rate from 1 to 10 with explanation
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Experiments – Results

1. Comparing with baseline

• Baseline: Non-DSL injected to obtain a minimal output

• 50 generated prompts, 3 trials per prompt
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Experiments – Results

1. Comparing with baseline

• Quantitative results:
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Experiments – Results

1. Comparing with baseline

• Quantitative results:

• Small differences in CLIP scores

• BUT! CLIP models were trained with real-life images,

many of which have a main subject

• Insensitiveness + small differences → Perhaps significant
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Experiments – Results

1. Comparing with baseline

• Quantitative results:

• Scenethesis generate significantly more objects → Vibrant and realistic

31LYU2406

Average # of regions Average # of objects

Scenethesis 1.36 20.973

Baseline 1.35 3.63



Experiments – Results

1. Comparing with baseline

• Qualitative results:
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Experiments – Results

1. Comparing with baseline

• Qualitative results:

• Similar scores for “region” and “physical”

• Scenethesis performs better in general

• Significant performance gaps for “object” and “visual”

• An evidence that Scenethesis can better follow user’s requirements while 

still producing visually pleasing scenes
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Experiments – Results

1. Comparing with baseline

• Examples (left is Scenethesis, right is baseline):
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“A colorful nursery with a crib, rocking chair, and playful decor.”



Experiments – Results

1. Comparing with baseline

• Examples (left is Scenethesis, right is baseline):
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“A quaint breakfast nook with a round table and cushioned bench seating.”



Experiments

2. Comparing different temperatures

• 𝑡 ∈ 0, 0.2, 0.5

• 20 generated prompts, 2 trials per prompt
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Experiments

2. Comparing different temperatures

• Quantitative results: 0 vs 0.2
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Experiments

2. Comparing different temperatures

• Quantitative results: 0 vs 0.5
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Experiments

2. Comparing different temperatures

• Qualitative results: 0 vs 0.2
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Experiments

2. Comparing different temperatures

• Qualitative results: 0 vs 0.5
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Experiments

2. Comparing different temperatures

• Subjective visual difference is not significant

• So, temperature is not a major factor on the performance of Scenethesis
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Experiments

3. Comparing different LLMs

• Model: gpt-4o-2024-08-06, gpt-4o-mini-2024-07-18, claude-3-5-sonnet-20241022

• 20 generated prompts (same as before), 2 trials per prompt
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Experiments

3. Comparing different LLMs

• Quantitative results: gpt-4o-mini-2024-07-18
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Experiments

3. Comparing different LLMs

• Qualitative results: gpt-4o-mini-2024-07-18
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Experiments

3. Comparing different LLMs

• As expected, larger models with better processing and generative capabilities work 

better
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Experiments

3. Comparing different LLMs

• Quantitative results: claude-3-5-sonnet-20241022 (only 5 scenes could be generated)
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Experiments

3. Comparing different LLMs

• Qualitative results: claude-3-5-sonnet-20241022 (only 5 scenes could be generated)
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Experiments

3. Comparing different LLMs

• An inspiration: models that are better at writing → better scene description → better 

scene
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Conclusion

We propose:

1. ScenethesisLang, a novel domain-specific language designed for unambiguously 

describing a 3D scene; and

2. Scenethesis, a pipeline that takes a user prompt and generates a corresponding 3D scene 

using ScenethesisLang.

Experiments have demonstrated the potential of Scenethesis in generating vibrant and 

visually pleasing scenes.
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Future Work

1. Reduce reliance on LLM

• LLMs may not be able to handle numerical tasks accurately

• Constraint solving is a highly complex task

• Explore different shape parsers and constraint solvers

→ More realistic and physically plausible scene
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Future Work

2. Employ object generation

• Current curated database has only ~50K objects (~23 GB)

• Original database has ~800K (~8 TB) → impractical to keep enlarging the database

• With object generation model that can synthesize new objects in real time:

• If the weighted object score is lower than a certain threshold → generate object

• Acceptable to keep using a smaller database

• No problem if the database does not have the target object
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Future Work

3. Continue our journey on automatic XR testing

• Scenethesis is just the first step in the final automated pipeline

• With prompts tailor-made for specific target environments, we can generate a diverse 

set of environments

• E.g., after figuring out how to make a smartphone recognize a virtual environment as 

a real one, we can freely test AR applications using our generated scenes

• Then perhaps we can use a Vision Language Model to analyze key frames and 

produce an evaluation report
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Q&A
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