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Teaser

Figure 1: A 2D rendering of a virtual scene generated using our DSL-based pipeline from

the prompt: “a 1b1b apartment of a researcher who has a cat.”
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Abstract

Extended Reality (XR), encompassing Virtual Reality (VR), Augmented

Reality (AR), and Mixed Reality (MR), has emerged as a transformative

domain with applications spanning entertainment, education, and com-

merce. A critical challenge in developing and testing XR applications is

the creation of diverse and realistic virtual scenes, essential for ensuring

robust performance across varied environments. This paper presents a novel

Domain-Specific Language (DSL) designed to describe and procedurally

generate 3D scenes tailored for XR applications. Our DSL offers expressive

constructs to model scene geometry, materials, objects, spatial and temporal

constraints, and probabilistic parameters, enabling diverse and physically

plausible scene generation. By addressing the limitations of traditional

scene graphs, our approach provides human-readable, flexible, and low-

level control over scene specifications, ensuring both explainability and

adaptability. Extensive experiments validate the efficiency of our DSL and

framework in generating stereoscopic 3D XR scenes.
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Figure 2: An illustration of people having a meeting in the Metaverse (from [39]).

1 Introduction

1.1 Background

Whether you like it or not, the term “Extended Reality” (XR), whose funda-

mental concept surprisingly dates back to as early as the 1800s [61, 8, 9],

has been ubiquitous since the past few decades. Some people may however

claim that they have never heard of the term, and may wonder: the reality

may not be appreciated by everyone, but it is something everyone must deal

with, so why on earth do we want to extend it which could potentially make

our lives even more complicated? It turns out, XR does not mean adding a

few more dimensions to our one and only reality, but is instead an umbrella

term for immersive technologies that the general public should be more

familiar with: Virtual Reality (VR), Augmented Reality (AR), and Mixed

Reality (MR) [44, 9].
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Among the three types of immersive technology, VR ought to be the

easiest to understand. In short, you immerse yourself in a totally digital

world (and hence the name “virtual”). That virtual world is 100% simulated,

and is completely isolated from the real world (i.e., whatever you do in

the virtual world does not affect the real world, and vice versa) [113, 44].

Thanks to the extraordinary capabilities of computer simulation, anybody

can perform countless actions in virtual world that literally no one (yet) can

perform in reality. For instance, you can slash rapidly approaching blocks

using two glowing sabers1, or swing through the sky of a huge city using

spider webs2. More recently, the notion of Metaverse, which is like an

online universe in which users represented by avatars can meet one another

in virtual spaces decoupled from the real world (see Figure 2) [98, 39], is

becoming more and more well-known, and has caught the eyes of numerous

big companies [49].

On the contrary, AR and MR are not totally distinctive. Both of them

aim to combine the real world and the virtual world, and they allow users

to “place” virtual objects into the virtual world [8, 44]. However, in MR,

things happening in the physical world can affect the virtual world (but

currently not vice versa), meaning users can interact with virtual objects in a

way almost identical to how they would normally interact with real objects.

This is something AR cannot do [44]. In other words, AR simply overlays

digital content onto the device displaying the combined world [44, 113],

1Beat Saber: https://beatsaber.com
2Spider-Man: Far From Home Virtual Reality: https://www.meta.com/experiences/pcvr/spid

er-man-far-from-home-virtual-reality/2190323657748572/

8

https://beatsaber.com
https://www.meta.com/experiences/pcvr/spider-man-far-from-home-virtual-reality/2190323657748572/
https://www.meta.com/experiences/pcvr/spider-man-far-from-home-virtual-reality/2190323657748572/


Figure 3: A runtime example of Google Maps’ Live View, in which a virtual arrow points

to the next (intermediate) destination (from [41]).

yielding a lower interactability compared to MR.

Typical examples of AR include Pokémon GO3, Google Maps’ Live

View (see Figure 3), and IKEA Place (see Figure 4). As for MR, one of

the most popular headsets is Meta Quest4 (indeed, Apple Vision Pro5 is

also quite popular, but it seems that Apple does not want their product to

be described as MR [3]). By the way, just for fun, if you are a fan of the

3Pokémon GO: https://pokemongolive.com/?hl=en
4Meta Quest: https://www.meta.com/quest/
5Apple Vision Pro: https://www.apple.com/apple-vision-pro/
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Figure 4: A runtime example of IKEA Place, in which a virtual chair is overlaid onto a

real rug (from [38]).

Figure 5: In one of the scenes in the movie Iron Man 2 (produced by Marvel Studios),

Tony Stark (the male character on the right) creates and throws a virtual ball while talking

to the female character.

Marvel Cinematic Universe, you may recall that in one of the scenes in

Iron Man 2, Tony Stark (the male protagonist) throws a virtual ball while

talking to another person in the physical world (see Figure 5). This is indeed

an example that demonstrates the interactability of MR (though under the

settings of the movie, all virtual objects are projected holographically, and

so no headset is used).
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1.2 Purpose of Automatic Virtual Scene Generation

Up to this point, you may already have a clear picture of what VR, AR, and

MR are. Naturally, the next question would be: why do we need automatic

virtual scene generation?

For VR, one may argue that for users to completely immerse themselves

in a virtual world, some sort of virtual scene is undeniably required, and

a virtual scene will not suddenly appear from nowhere unless someone

actually creates (i.e., generates) it, which in turn desires automation to speed

up the generation process. This is true. However, the use of fully simulated

environment is also the exact reason why we should not use automatic scene

generation. The virtual scene is not just viewed by developers, but is in fact

targeted at end users. Undoubtedly, the quality of the final virtual scene

would determine a large proportion of the users’ impressions and ratings

towards the entire software. Under this circumstance, human-oriented scene

generation is the only way to ensure product quality, unless one day there

exists an artificial general intelligence (AGI) that is capable to learn, reason,

design, and reflect like a real human being.

What about AR and MR? Their functionalities are based on the physical

world, and they are mainly focused on merging virtual objects (not virtual

scenes) to the real world. So we do not even need a scene, right?

Not really.

The actual problem lies in software testing. The importance of software
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testing has been studied and emphasized by (metaphorically) countless

pieces of academic work (including but not limited to [72, 2, 120, 55, 45, 119,

50]). Given that about 1 billion people around the globe have experienced

mobile AR (MAR) applications in 2023 [112], and the worldwide revenue

in the AR and VR market is forecasted to be about US$62.0 billion in 2029

[111], it is crystal clear that ensuring and maintaining the quality of XR

software is of utmost importance to the world economy. In this sense, it is

completely reasonable to argue that XR software should also be thoroughly

tested. Nonetheless, this may not be as straightforward as testing non-XR

software.

Take MAR application as an example. Traditionally, when a group of

developers want to test their MAR application, they have to (in a much

simplified manner) (i) design and construct at least one testing environment

in the physical world that fits their requirements (and the needs of target

audience), (ii) find multiple testers to explore and test all functions in the

application within the environment, and finally (iii) manually analyze the

video recordings and other collected data to determine if the application

complies with some pre-defined guidelines [69, 118, 76, 7, 90]. By simply

imagining the above-mentioned pipeline, you will most likely immediately

come to the conclusion that it is highly labor-intensive and time-consuming.

Wouldn’t it be much better if all three stages (or at least any one of them)

can be automatically performed? This is exactly what this project aims at

achieving.

The first half of the whole project (which is the main topic of this re-

12



port) is focused on automatically designing and constructing diverse virtual

scenes (based on any desired scenario), in which some kind of automated

virtual agents can travel around, that can be used to substitute the physical

environment when testing XR (primarily AR) applications. The second half

will be about automatically analyzing and evaluating runtime recordings of

XR applications that are tested in virtual scenes generated by our method.

1.3 Motivation

Section 1.2 discusses, from the perspective of XR testing, one of the reasons

why someone may want to work on the topic of automatic virtual scene

generation. Now, let’s discuss why we decided to contribute to this topic.

You may already be able to guess by now that we are not the first one to

propose new method on automatic virtual scene generation (Section 2.1.1).

Yet, they have some general drawbacks that render them unsuitable for

XR-oriented virtual scene generation. The biggest issue is the dominent

use of scene graph (Section 2.1.1.2) as the underlying scene-representing

structure. To put it simply, each node and each edge in a scene graph

can only represent one predefined object class and one predefined relation

respectively. The heavy reliance on predefined sets greatly restrict the

diversity and preciseness of generated scenes. In the context of XR testing,

developers more often than not want to test their target XR application

under as many diverse environments as possible, so as to assure users

that they can normally use the application no matter where they are and

how complex the environment is (of course under the assumption that the
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environment is reasonably lit). Besides, since a scene graph is usually

realized in the form of a matrix (which typically stores high-dimensional

non-human-understandable values), if there are some minor physical details

that one would like to modify after the scene is generated, what should that

person do? It is arguably unwise (and in fact uneconomical) to generate

everything from scratch again. In other words, scene graph fails to provide

users with low-level controllability of the virtual scene, which is a key to

allowing developers to fine-tune small details in the scene in the hope of

fulfilling their requirements.

All in all, scene graph is not the best option for representing an XR-

oriented virtual scene. But we still need something to represent a generated

scene, right? Otherwise, everything would be locked inside a blackbox,

making such method non-transparent and hence not practically trust-worthy.

Though, we do not simply want any “something”. We want a structure that

is:

1. human-understandable (which boosts explainability and controlla-

bility);

2. unambiguous (i.e., all possible configurations in the scene can be

clearly formulated);

3. flexible (i.e., there exists more than one solution for diversity, if appli-

cable); and

4. universal (i.e., all physically possible environments, or at least the

common ones, can be modeled).

14



This is where our proposed domain-specific language (DSL) (Section 3.1)

comes into play.

1.4 Summary of the Proposed Method

We propose a novel Domain-Specific Language (DSL) for 3D scene de-

scription and generation, designed to address the challenges of creating

diverse, realistic, and physically plausible virtual environments for XR

applications. The DSL provides expressive constructs for defining scene

geometry, materials, objects, spatial and temporal constraints, and proba-

bilistic parameters. Unlike traditional scene graphs, our approach empha-

sizes human-readability, flexibility, and low-level control, enabling precise

customization and procedural generation of scenes.

In short, our main contributions include:

1. The design and implementation of a human-readable, expressive DSL

for XR-oriented 3D scene description and generation.

2. A procedural generation engine that supports diverse and physically

consistent scenes through probabilistic and constraint-based modeling.
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2 Related Work

2.1 3D Scene Generation

While the topic of 3D scene generation seems to be emerging recently

partially because of the rise in popularity of robot training in virtual envi-

ronment [105, 74] and XR applications, 3D scene generation in fact has a

very long history, with some of the earliest works [106, 117, 71, 14] even

attempting to combine scene generation with natural language processing

(NLP) (of course they did not have access to any large language model

(LLM) back then). We emphasize that there exist hundreds if not thousands

of academic papers regarding this broad topic, making it basically imprac-

tical (and honestly unnecessary) to list them all in this report. So, we try

our best to include and briefly discuss relevant works from only the past 10

years.

2.1.1 Playable Scene

At first glance, you may think that the word “playable” implies some kind of

game. But it is not. In the physical world all of us are living in, when we see

an object, we can (most likely) pick it up, move it somewhere else, and put

it down. This configurability in real time is what makes a virtual scene (in

the context of this report) playable. In other words, runtime interactability

can be achieved.
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2.1.1.1 Probabilistic Generation

This group of works (including but not limited to [13, 15, 102, 51, 32,

73, 146]) contribute to an earlier (but still modern) phase of virtual scene

generation. The fundamental concept is to generalize the distribution of

objects (and perhaps their relations and positions) in all training scenes

using some probabilistic model. Then, we can utilize the knowledge learned

for random sampling during inference. For example, SceneSeer [15] parses

a text prompt using some fixed grammar, and computes the most probable

scene template under that prompt. Because of the use of a probabilistic

model, the number of classes of 3D objects these methods can handle is

limited, which in turn harms the diversity of generated scenes. For XR

testing, the diversity of testing scenes is very crucial since only then can

developers be assured that their product can function properly under a broad

spectrum of scenarios.

2.1.1.2 Deep Generation

The word “deep” refers to the use of deep learning strategies. This group of

works is by far (to the best of our knowledge) the most prevalent in the field

of interactable 3D scene generation. Generally speaking, they are all trying

to learn and represent a 3D scene using some underlying structure (e.g.,

matrix or scene graph [52, 60]). The major difference is how they learn —

architectures such as Convolutional Neural Network [123, 97, 122, 133],

Encoder-Decoder [65, 24, 131, 17, 35, 129, 126], Generative Adversarial
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Network [5, 66], Transformer [124, 88, 82, 125, 70, 148, 137], and Dif-

fusion [68, 150, 142, 115, 143, 134] have been extensively utilized and

studied (other methods include [147, 151]). Once the underlying structure

is established (by learning from a lot of manually crafted scenes, with one of

the most popular datasets being 3D-FRONT [31]), it can be conditioned on

different types of input for downstream tasks. For instance, ATISS [88] can

be conditioned on floor layout for scene generation, scene completion, and

object suggestion; InstructScene [68] can be conditioned on text for scene

generation, scene stylization, scene re-arrangement, and scene completion;

EchoScene [142] can be conditioned on scene graph for scene generation.

Scene Graph A scene graph, just like any other graphs, consists of nodes

and edges. Each node encodes an object in the scene, while each edge

encodes the relation between the two connected objects. Even though it

sounds like an intuitive and naturally suitable structure for virtual scene

generation, there are a few problems that make it a suboptimal structure

for scene generation when it comes to XR testing. First of all, a typical

scene graph can only encode one discrete number c ∈ {1, ..., Kc} for each

node as its object class, whereKc is the predefined number of object classes

in the training set (hence making the method scene-specific). This means

that the number of object classes you can possibly get is bounded, severely

affecting the diversity of all virtual scenes that could be generated. And if

you want to add a new object class, you will have to re-train (or at least do

some fine-tuning) to your existing model. This is not something desired

in XR testing, since we want to be able to handle any type of scene with
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any class of object using one single pipeline, making it a truly practical

method. The same categorical problem applies to edges, as each edge

can only encode one discrete number e ∈ {1, ..., Ke} for its relation class,

whereKe is the predefined number of relation classes. Such restriction on

edges can potentially damage the expressiveness of the scene graph due to

the fact that (1) there may exist some relations that cannot be accurately

described by one of Ke relation classes, or (2) even if there exists a per-

fect match, the relation cannot be precisely controlled. The use of such

edge also gives rise to one more problem: the assumption that there can

only be at most 1 relation between 2 objects. This assumption eliminates

the possibility of using multiple relations to comprehensively and unam-

biguously describe how two objects spatially influence each other, which

in turn makes it more challenging to finely adjust a generated scene (for

XR testing) upon user request. With that said though, we do believe that

having an underlying structure is critical to ensuring that our method is

interpretable and controllable [130]. Hence, one of our contributions is a

new domain-specific language (DSL) (Section 3.1) that can be used to

substitute scene graph, reducing ambiguity when describing a virtual scene

while maintaining explainability and controllability.

2.1.1.3 View-based Generation

This group of works (including but not limited to [46, 83, 132, 16, 21]), while

could also be utilizing deep learning methods, is more focused on generating

a portion of a scene (from an angle). They typically take an RGB image as
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input, and try to figure out the best way to put several objects visible in the

image into a scene such that when rendered from a certain angle, the scene

looks exactly like the original image. For example, Total3DUnderstanding

[83] detects 2D bounding boxes and 3D objects from an RGB image, and

estimates tha layout of the scene captured by the image. On one hand, this

kind of method does make it easier for people to more accurately re-create

their surroundings. But on the other hand, it also lacks the capability to

generate scenes that people cannot usually see or have access to. As for XR

testing, since we want to create a variety of virtual scenes without the need

to construct a real one, it would be somehow illogical to seek for a physical

environment in the first place for view-based generation.

2.1.1.4 LLM-based Generation

As Generative Pre-Trained Transformer (GPT) [93, 94] quickly gains its

enormous popularity, lots of research have been conducted to show that its

potential is beyond our imagination. Thanks to its unparalleled capability

in understanding natural human languages, researchers from different fields

are giving their best effort to integrate GPT-based Large Language Models

(LLMs) in their projects. Naturally, researchers working on automatic

virtual scene generation have also done so. This group of works (including

but not limited to [28, 136, 34, 33, 1, 11, 85, 135]) aims at exploiting the vast

knowledge “learned” by an LLM (particularly knowledge regarding scene

design) and prompting it to lead (or at least guide) the entire generation

process.
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As an example, one of our competitors, Holodeck [136], first utilizes

GPT-4 [86] to (1) generate a floor plan (with coordinates and materials), (2)

generate connections (i.e., doors) and window positions, (3) generate the

attributes of target objects, and (4) generate the constraints that all objects

need to obey. Then, it employs a depth-first search solver to solve the

constraints to output each object’s optimal position and rotation, producing

the final scene (out of many possibilities). While their results look promising,

the concept of scene graph is still being applied during constraint generation

and solving, which again is suboptimal in our case. In this project, we

implement a similar module-by-module pipeline, but we also inject our DSL

into the prompts.

2.1.1.5 Procedural Generation

This group of works (including but not limited to [23, 95]) does not (primar-

ily) use Artificial Intelligence for scene generation. Instead, they achieve

automated creation of virtual environments based on a set of predefined

(mathematical) rules or algorithms. While they can indeed generate a set

of diverse and visually pleasing virtual scenes in a relatively short amount

of time, the existence of rules implies some sort of limitation, and limi-

tation reduces flexibility (and in some sense, creativity). In XR testing,

we sometimes want a high level of flexibility to a point where edge cases

can be produced in order to evaluate the stability and adaptability of the

target XR application. For instance, ProcTHOR [23] (which has already

been integrated into AI2-THOR [59]) employs specialized algorithms to
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first cut indoor boundaries (i.e., create rooms), and then iteratively place

(and rotate) retrieved 3D models with the goal of making the final scene

physically possible and semantically meaningful.

2.1.2 Non-Playable Scene

Just like how a coin has two sides, apart from playable scene generation,

there is of course non-playable scene generation. This line of methods can

undeniably generate high-quality and plausible contents, but the generated

scenes are either (1) a single unified mesh (imagine every single object in

front of you fuses with whatever it is touching, and the resulting objects in

turn fuse with other objects, ultimately forming one unseparable mesh), or

(2) not an environment in which you can freely move around (i.e., no mesh

is generated). While these properties are suboptimal for XR testing because

it is desirable to be able to actually interact with our scenes (i.e., moving an

object using a virtual hand in real time) such that the target application can

be tested in a more physically accurate and realistic environment, we still

believe that this line of works has its own values and thus is worth sharing.

2.1.2.1 Depth-based Paranoma-like Generation

From a high-level and general perspective (which may not be 100% correct,

but it makes it easier for one to grasp the basic concepts), this group of works

(including but not limited to [84, 114, 107, 43, 110, 144, 58, 116, 26, 18,

104, 77, 87, 25, 149, 75, 138, 108, 64]) is trying to (1) fix a camera in some

3D position pointing at some direction, (2) estimate or generate the depth
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map of the portion of the scene visible from the camera, (3) generate the

RGB values of what the camera should see based on the previously obtained

depth map, and finally (4) fix the camera at another position (pointing at

another direction) and repeat the whole process. They mainly differ in (1)

how they find a suitable position and direction to initialize and move the

camera, (2) what method they use to obtain a depth map, (3) how they ensure

that depth maps from different camera settings can actually align with one

another such that the final mesh can be as watertight as possible, and (4)

what method they use to generate RGB values. Their generated scenes

are described as “paranoma-like” because they usually position the camera

near the center of the scene and make it orbit the center while constantly

rotating to point outward, forming something you would usually see in

Google Maps’ Street View. Because these methods essentially generate

2D images iteratively, there is no separation among physical structures,

producing one unifed mesh at the end.

For example, PerspectiveNet [84] takes a sparse set of reference RGB-D

room views as input, and uses a denoising autoencoder to generate the RGB-

D values of the remaining scene. Text2Room [43] takes a text prompt as

input, and utilizes Stable Diffusion [100] for RGB generation and Iron Depth

[4] for depth generation to produce the final textured 3D mesh. FastScene

[75] also takes a text prompt as input, and utilizes Diffusion360 [27] for

panorama generation and EGformer [141] for depth estimation to produce

an intermediate point cloud.
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2.1.2.2 View-dependent Volume Rendering

Unlike the above depth-based paranoma-like generation methods, this group

of works (including but not limited to [20, 91, 6, 145, 140]) begins with

some basic and simple 3D representation (such as a 3D bounding box).

Then, some method is employed to generate the required scene on some

relatively complex yet informative 3D representation. Finally, some Com-

puter Graphics technique such as ray casting is used to render the scene

from a certain angle. For instance, Set-the-Scene [20] takes a text prompt

and some 3D bounding boxes as inputs, and generates the final scene in

neural radiance fields (NeRF) [79]. DreamScape [140] also takes a text

prompt as input, converts it to some useful 3D information using LLM, and

generates the final scene using 3D Gaussian Splatting [54].

2.1.2.3 Full Volume Denoising

To the best of our knowledge, this group of works (including but not limited

to [53, 127, 62, 78]) only appeared very recently. Instead of applying

diffusion-based models [42, 109] to 2D image generation [100] or object-

level 3D generation [128], they directly apply the notion of diffusion (and

denoising) to large-scale scene-level 3D generation. After determining the

underlying 3D representation, they iteratively denoise a certain volume of

3D space to generate a detailed yet unifiedmesh. For instance, DiffInDScene

[53] and LT3SD [78] use truncated (un)signed distance function as the 3D

representation, while BlockFusion [127] and SemCity [62] use tri-plane
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[89, 12]. Thanks to the design of block-by-block diffusion, BlockFusion

and LT3SD can in fact (theoretically) generate an infinitely large scene.

2.1.2.4 Motion-simulating Generation

Compared to the above 3 types of methods, this group of works (including

but not limited to [10, 30, 139, 63, 67]) is quite different in the sense that

they are more like video generation. Imagine you are sitting on an office

chair. Take a look the view in front of you, remember it, and then close

your eyes. Now, if someone pulls your chair from behind, how would you

expect the view in front of you changes? This is the fundamental concept

of these papers. Given at least one input image (and perhaps a text prompt),

they inject camera movements to the input image(s) to perform 4D (time

dimension in addition to 3D) exploration. While, to a certain extent, what

they produce can be considered as a scene, since there is not really any

object that can be isolated from the scene, and you cannot maneuver in the

scene, they are suboptimal to XR testing.

2.2 Domain-Specific Language (DSL)

Domain-Specific Languages (DSLs) have garnered significant attention

as tools for enhancing productivity, maintainability, and expressiveness

in software engineering. Research has demonstrated their utility across

various domains, including programming languages, software engineering,

and security, by offering tailored abstractions and mechanisms to address

specific challenges.
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Negm et al. [81] propose a semantic-based approach for developing

DSLs, leveraging ontologies for domain representation and reasoning. This

methodology emphasizes a systematic integration of domain knowledge,

improving the development and usability of DSLs for business and technical

applications. Similarly, Cisternini et al. [19] introduce GeoDSL, designed

for Internet measurements, enabling non-expert users to manage and analyze

measurement data effectively. This research underscores the role of DSLs

in lowering barriers for domain-specific tasks.

In the security domain, Kim et al. [57] present PoE, a DSL tailored for

exploit development. By standardizing exploit construction, PoE improves

reusability and collaboration among security researchers. Zhu et al. [152]

explore architectural concerns with C-Saw, an embedded DSL for recon-

figurable, distributed software systems. Their work highlights the benefits

of separating architectural specifications from application logic, improving

clarity and reuse.

The health and space exploration domains also benefit from DSL in-

novations. Rojco et al. [99] propose PHM4HHP, a DSL for integrating

heterogeneous models and data in health support systems, particularly for

crewed space missions. Forbrig et al. [29] develop a DSL for humanoid

robot behavior, incorporating sensor data to enhance task modeling and

execution.

In the field of machine learning, Giner-Miguelez et al. [36] introduce a

DSL for describing machine learning datasets. This DSL addresses dataset
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structure, provenance, and social concerns, fostering standardization and

quality improvement. Similarly, Vuković et al. [121] focus on fluent APIs,

using a DSL to automate graphical representation and code generation,

streamlining API development.

For IoT applications, Salman et al. [101] discuss the challenges and

opportunities of DSLs in simplifying the integration of IoT capabilities. In a

related context, Kharisma et al. [56] propose a DSML for REST-compliant

services, enhancing abstraction and usability for service design.

Several studies investigate DSLs for specific computational problems.

Nagashima [80] designs a DSL for encoding induction heuristics in theorem

proving, and Gleißner [37] demonstrates how DSLs can optimize numer-

ical solutions for ordinary differential equations. Furthermore, Gupta et

al. [40] explore systematic methodologies for industrial DSL development,

emphasizing ease of use and efficient modeling.

These works collectively highlight the diverse applications and advan-

tages of DSLs in addressing domain-specific challenges. They underline

the importance of abstraction, customization, and tool support in advancing

domain-specific software engineering practices.
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3 Methodology

This section discusses our proposed DSL ScenethesisLang (Section 3.1) and

our proposed method, Scenethesis, for scene generation (Section 3.2). From

a high-level point of view, our DSL is carefully designed to unambiguously

describe any scene, and Scenethesis incorporates this language to assist the

second half of the entire generation pipeline.

3.1 Domain-Specific Language for Structured Scene Syn-

thesis (ScenethesisLang)

The proposed Domain-Specific Language (DSL) is designed to describe

and generate diverse, realistic, and physically plausible 3D scenes for XR

applications, with a focus on expressiveness, flexibility, and usability. This

subsection details the language’s syntax, semantics, and operational princi-

ples, highlighting how it facilitates the modeling and procedural generation

of 3D environments.

3.1.1 Language Design Goals

The design of the DSL was guided by the following objectives:

• Expressiveness: The DSL must capture diverse aspects of a 3D scene,

including geometry, materials, objects, and constraints.

• Human-Readability: Developers should find the DSL intuitive, en-

abling seamless writing, understanding, and modification of scene

specifications.
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• Generative Capability: The DSL must support probabilistic param-

eters for procedural generation and the creation of diverse testing

scenarios.

• Physical Plausibility: The DSL should enforce constraints to en-

sure that generated scenes are realistic and adhere to the principles of

physics.

3.1.2 Core Abstractions

The DSL models 3D scenes using a hierarchy of abstractions, enabling a

modular and systematic specification of environments. These abstractions

are described below.

3.1.2.1 Scenes

A scene represents the overall 3D environment and is defined by its type

(indoor, outdoor, or mixed), metadata description, and components such as

regions, connections, constraints, probabilistic parameters, and temporal

requirements. The formal definition is:
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scene ∈ Scenes ::= SceneType: scene_type;

SceneDescription: scene_description;

Regions: regions;

Connections: connections;

Constraints: constraints;

ProbabilisticParameters: probabilistic_parameters;

TemporalRequirements: temporal_requirements

Scene type (scene_type) specifies the overall nature of the environment (e.g.,

indoor or outdoor), while scene description (scene_description) captures

descriptive metadata.

3.1.2.2 Regions

A region represents a spatial subdivision within a scene, such as a room

or outdoor area. Each region is characterized by its geometry (shape),

materials, construction details, contained objects, visibility conditions, and

constraints:

region ∈ Region ::= id← region(description, shape,materials,

construction, objects, visibility, constraints)

The shape of a region can be specified using geometric primitives such

as cuboids, ellipsoids, and meshes, or their combinations using union (∪),
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intersection (∩), or subtraction (−) operations. For example:

shape ∈ Shape ::= cuboid | ellipsoid |mesh | shape ∪ shape |

shape ∩ shape | shape− shape

3.1.2.3 Materials

Materials define the physical and visual properties of a region’s surfaces.

These include color, texture, reflectivity, and opacity:

floor_material ∈ Material ::= material(color, texture, reflectivity,

opacity)

Separate materials can be defined for floors and non-floor surfaces, allowing

detailed customization of a region’s appearance.

3.1.2.4 Objects

Objects are the entities within a region and are defined by their category,

physical dimensions, position, orientation, and visibility:

object ∈ Object ::= id← object(category, description, dimensions,

position, rotation, bounding_box,

probabilistic_properties, visibility)

The position of an object can be specified absolutely or relative to another

object. Probabilistic parameters enable dynamic placement during gener-
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ation, such as using a uniform or Gaussian distribution to define position

offsets.

3.1.2.5 Connections

Connections represent spatial relationships between regions, such as door-

ways, windows, or open passages. Each connection specifies the connected

regions, type (e.g., single door, window), and optional descriptive metadata:

connection ∈ Connection ::= connection(region1, region2, type,

description)

3.1.2.6 Constraints

Constraints enforce physical plausibility and domain-specific requirements.

These include spatial conditions (e.g., alignment, containment), visibility

conditions (e.g., line-of-sight), and temporal conditions (e.g., event sequenc-

ing):

constraint ∈ Constraint ::= spatial_condition | probabilistic_condition |

temporal_condition

For example, a spatial condition might ensure that an object is always inside

a specific region, while a probabilistic condition could control the likelihood

of a certain configuration.
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3.1.3 Probabilistic Scene Generation

Adistinguishing feature of the DSL is its support for probabilistic parameters.

These parameters allow developers to specify ranges or distributions for

attributes such as object positions, dimensions, and material properties.

During generation, the DSL engine samples these distributions to produce

diverse scenes.

probabilistic_condition ∈ ProbabilisticCondition ::=

probability(p): condition |

distributionBased(object, param: distribution)

For instance, the position of a chair within a room can be defined using

a Gaussian distribution centered at the room’s midpoint, allowing slight

variations between generated scenes.

3.1.4 Temporal Requirements

Temporal requirements are crucial for dynamic scenes where interactions

occur over time. The DSL provides constructs to define temporal logic

conditions, such as requiring a specific object configuration to exist during

a time interval or ensuring sequential constraints between actions:

temporal_requirements ∈ TemporalRequirements ::=

always(condition) | eventually(condition) | until(condition1, condition2)
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scene ∈ Scenes ::= SceneType: scene_type;

SceneDescription: scene_description;

Regions: regions;

Connections: connections;

Constraints: constraints;

ProbabilisticParameters: probabilistic_parameters;

TemporalRequirements: temporal_requirements

scene_type ∈ SceneType ::= indoor | outdoor | mixed
scene_description ∈ Description ::= text

regions ∈ Regions ::= region | region; regions
region ∈ Region ::= id← region(description, shape,materials,

construction, objects, visibility, constraints)

shape ∈ Shape ::= cuboid | ellipsoid |mesh |
shape ∪ shape | shape ∩ shape | shape− shape

cuboid ∈ Cuboid ::= cuboid(corner.min, corner.max)

ellipsoid ∈ Ellipsoid ::= ellipsoid(center, a, b, c)

mesh ∈ Mesh ::= mesh(vertices, faces)

corner ∈ Corner ::= min | max
materials ∈ Materials ::= floor_material; non_floor_material

floor_material ∈ Material ::= material(color, texture, reflectivity, opacity)

non_floor_material ∈ Material ::= material(color, texture, reflectivity, opacity)

construction ∈ Construction ::= vertices, faces

vertices ∈ Vertices ::= [(x, y, z), ...] | [(x, y), ...]
faces ∈ Faces ::= [(index1, index2, index3), ...]

Figure 6: ScenethesisLang for 3D Scene Description and Generation (more in Figures 7

and 8).

3.2 Scenethesis: Structure-Driven Scene Synthesis Frame-

work

As shown in Figure 9, Scenethesis employs a systematic pipeline to fully

automatically generate a playable scene from a single user prompt, in-

voking a series of interdependent modules: (1) Scene Analysis Module
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objects ∈ Objects ::= object | object; objects
object ∈ Object ::= id← object(category, description, dimensions,

position, rotation, bounding_box,

probabilistic_properties, visibility)

category ∈ Categories ::= text

description ∈ ObjectDescription ::= text

dimensions ∈ Dimensions ::= (length, width, height)

position ∈ Position ::= (x, y, z) | offset(position, vector) |
relativeTo(reference)

rotation ∈ Rotation ::= (roll, pitch, yaw) | relativeTo(reference)
bounding_box ∈ BoundingBox ::= bounding_box(min,max)

visibility ∈ Visibility ::= rayTrace(density, occlusion) |
regionVisibility(region, conditions)

connections ∈ Connections ::= connection | connection; connections
connection ∈ Connection ::= connection(region1, region2, type,

description)

type ∈ ConnectionTypes ::= open | single_doorframe | double_doorframe |
single_door | double_door | window

description ∈ ConnectionDescription ::= text

constraints ∈ Constraints ::= constraint | constraint; constraints
constraint ∈ Constraint ::= spatial_condition | probabilistic_condition |

temporal_condition | object_relation |
visibility_condition | physical_constraint |
user_defined(logic, priority)

spatial_condition ∈ SpatialCondition ::= inside(region) | outside(region) |
above(object, height) |
below(object, height) |
nearby(object, distance) |
alignedWith(object, axis) |
tangentTo(surface) |
distanceBetween(object1, object2) == d

probabilistic_condition ∈ ProbabilisticCondition ::= probability(p):

condition |
distributionBased(object,

param: distribution) |
resample(object, param)

Figure 7: Continuation of Figure 6.
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temporal_condition ∈ TemporalCondition ::= always(condition) |
eventually(condition) |
until(condition1, condition2) |
next(condition) |
during(interval, condition)

visibility_condition ∈ VisibilityCondition ::= canSee(observer, target) |
occludes(object1, object2) |
visibleInRegion(observer, region) |
rayTraceValid(observer, target, density)

physical_constraint ∈ PhysicalConstraint ::= noCollision(object1, object2) |
collisionFreeRegion(region) |
stablePosition(object) |
gravityAligned(object)

user_defined ∈ UserDefinedConstraint ::= customLogic(logicExpression, priority)

temporal_requirements ∈ TemporalRequirements ::= always(condition) |
eventually(condition) |
until(condition1, condition2) |
next(condition)

object_relation ∈ ObjectRelation ::= relation(object1, object2, relation_type)

relation_type ∈ RelationTypes ::= above | below | inside |outside | nearby | aligned |
occludes | intersects

lights ∈ Lights ::= light | light; lights
light ∈ Light ::= id← light(category, description, intensity, position, visibility)

intensity ∈ Intensity ::= float | distribution

Figure 8: Continuation of Figure 7.

(Section 3.2.1), (2) Scene Conceptualization Module (Section 3.2.2), (3)

Region Construction Module (Section 3.2.3), and (4) Object Placement

Module (Section 3.2.4). In the following sections, we introduce them one

by one. Please be reminded that (1) all prompt templates in this report for

invoking an LLM are written as a multiline string in Python6, (2) they all

require the original user prompt, and (3) they all ask the LLM to output in

6Particularly, the {...} is for string formatting with the str.format() method, while the {{...}} is

for an actual pair of curly braces.
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Figure 9: With the help of LLM, Scenethesis employs a module-by-module pipeline to

generate a virtual scene from a single user prompt.

JSON format. One last thing is that we are using the left-handed coordinate

system (whose length unit is meter) throughout this report, i.e., the positive

x-axis points rightward, the positive y-axis points upward, and the positive

z-axis points forward.

3.2.1 Scene Analysis Module

Illustrated in the first row of Figure 9, this module takes advantage of

LLM to enhance the overall understanding of the desired scene. As an
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old Chinese saying goes, “know yourself and know your enemy.” It is of

utmost importance for an individual to possess as much information about

a particular issue as possible before beginning to tackle it. If this is the

case for human being, then it would be unfair to assume that an LLM can

perform similarly well (when compared to a human) with less information.

In other words, we have to provide the LLM with as much information as

we can. Nonetheless, it would be too arrogant to assume that any user using

this system is going to input every piece of detail through the prompt. To

resolve this, we ask the LLM to analyze and expand the original user prompt

(while strictly following any requirements stated in the user prompt) such

that it can have a clearer picture of what the final scene should look like

before proceeding to the scene generation procedure. This ensures that it

has some kind of instructions to follow and will not simply output whatever

it wants, increasing the predictability of the final scene.

3.2.1.1 Scene Type

This submodule is responsible for classifying the final scene into indoor or

outdoor based on the original user prompt. This allows the LLM to be more

aware of the scenario or space that it is dealing with. The output from this

submodule is also used in later prompts to determine the suitable content in

the prompts.

Prompt template:

## Task description

You are given a user prompt: {prompt}
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Classify the scene into "indoor" or "outdoor".

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**:

{{"scene_type": "indoor/outdoor"}}

3.2.1.2 Scene Description

This submodule is responsible for adding details to the user prompt, effec-

tively producing a new longer prompt that is more semantically compre-

hensive and meaningful. The LLM is required to elaborate more on (but

not limited to) (1) the scene’s purpose of existence (i.e., why would one

build such scene), (2) example objects that are likely to exist (i.e., when

people are talking about such scene, what objects pop up in their mind), (3)

expected human activities (i.e., what can people do in the scene), and (4)

atmosphere (i.e., how would one feel when looking at the scene). By doing

so, we are able to get our hands on a more complete high-level description

of the final scene. We expect all these pieces of information to guide the

generation process in the next module, such as increasing the likelihood of

generating objects that actually match the scene. One thing to note is that

the LLM is required to strictly follow all requirements stated in the original

user prompt. By enforcing this, we can better limit the creativity of the

LLM such that it only outputs what the user wants and never outputs what

the user does not want, making the upcoming scene generation procedure

more aligned with the original user prompt. Of course, creativity is still
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encouraged in places that are not explicitly mentioned in the text prompt, up

to the point of not significantly changing the overall structure or meaning

of the scene.

Prompt template (requires output from Section 3.2.1.1):

## Task description

You are given a user prompt describing an {scene_type}
scene: {prompt}
Rephrase the user prompt comprehensively to produce a
meaningful description, covering topics including (but
**not** limited to):
1. purpose of existence (i.e., why would one build such
scene);
2. example objects that are likely to exist (i.e., when
people are talking about such scene, what objects pop up
in their mind);
3. expected human activities (i.e., what can people do
in the scene); and
4. atmosphere (i.e., how would one feel when looking at
the scene).

## Guidance

- You **must** strictly follow **all** requirements in
the prompt.

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
<FILL_IN> represents the description you need to
generate:

{{"scene_description": "<FILL_IN>"}}
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3.2.2 Scene Conceptualization Module

Illustrated in the second row of Figure 9, this module exploits the generation

capability of LLM to create a semantic draft of the desired scene. It is

“semantic” in the sense that only text is outputted. What about “draft”? It

means that the anticipated scene, after this module, is only described in a

high-level manner. For instance, instead of outputting every single vertex

of a region, we use proper sentences to describe how that region should

look like when being viewed from outside (perhaps using some common

shapes). In other words, this module generates a rough blueprint of the final

scene that cannot be immediately and directly realized, but is thorough and

imaginable enough for us to construct the scene inside our mind (hence the

word “conceptualization”). You may consider this module as a bridge that

connects Section 3.2.1 and later modules.

3.2.2.1 Region Design

This submodule is responsible for generating the details of each region.

For indoor scenes, a region is equivalent to a room, which is something

very natural and straightforward since every indoor region is nothing but an

enclosed space. But for outdoor scenes, we use the word “area” to represent

a region, which could be counterintuitive because the concept of area is

usually used in 2D context. So, we specifically define what an area is when

we are using the prompt template designed for outdoor scenes:

“An outdoor area is defined as the bottom shape (from bird’s eye
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view) of a prism with infinite height.”

We use this definition because we want to remind the LLM that it only

has to deal with objects placed on the ground (because there is naturally no

wall nor ceiling in an outdoor scene, which is also why “infinite height” is

added), but it is still working in a 3D space (hence the word “prism”).

Putting the special definition aside, the LLM has to generate, for each

region (nomatter it is indoor or outdoor), (1) a unique name for the region, (2)

a detailed description summarizing (i) its purpose of existence, (ii) example

objects that are likely to exist inside it, (iii) expected human activities inside

it, and (iv) its atmosphere, and (3) a detailed textual description illustrating

the shape of the region. As a human being, you may already be able to

foresee what the scene would look like (or even what objects would probably

be placed inside it) by simply analyzing (2) and (3). We believe the LLM

can also benefit from this kind of imagination and analysis in later modules.

Note that for (3), unlike Holodeck [136], we argue that the chance of seeing

a perfect cuboid as a room is much less than that of seeing an irregular

shape (such as the English letter “L” when being observed from above), and

so we do not explicitly require the LLM to output a cuboid (or rectangle).

Furthermore, we emphasize in the prompt that extra regions not requested

by the user must not be generated, reducing the odds of the LLM generating

more than one region for the sake of making the scene more realistic while

in fact the user, for instance, only wants one single region.

For indoor scenes, the LLM has to generate a little bit more. Opposite
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to the natural assumption that there is no wall nor ceiling in an outdoor

scene, it is rational to assume that there is always a wall and ceiling in an

indoor scene. Notice how a typical room uses different colors and materials

for its floor, wall, and ceiling? If we want our final scene to be vivid, the

appearance of these boundaries must also be considered. In view of this,

the LLM is simultaneously asked to generate descriptions of the materials

of these types of structures. Using these descriptions, we can then find from

a material database Dm = {m1, . . . ,mnm
} the most suitable candidate (in

the form of an image), where nm is the number of available materials.

In particular, given a material description qm, we use

m∗ = argmax
m∈Dm

CLIP (m, qm) (1)

to find the most suitable candidate materialm∗, where

CLIP (m, qm) = ˆCLIPimg (m) · ˆCLIPtxt (qm) (2)

in which CLIPimg (·) and CLIPtxt (·) are the image encoder and text encoder

respectively from CLIP [92] that return high-dimensional feature embed-

dings, v̂ denotes a vector v after normalization, and a · b denotes the dot

product between two vectors a and b. Using simple English, we are find-

ing the material in the database that has the highest visual similarity with

the material description. In reality, since Dm is (assumed to be) fixed, we

can precompute the embeddings ˆCLIPimg (m) ∀m ∈ Dm, and save them

somewhere on the system in order to reduce generation time.
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Though, the terms “wall” and “ceiling” should actually be collectively

called “non-floor”, due to the fact that not every enclosed structure con-

sists of distinguishable wall and ceiling (e.g., a dome-shaped observatory

or an Egyptian pyramid). So at the end of the day, two material-related

descriptions (floor and non-floor) will be generated for each indoor region.

The floor will use the floor description, while anything else will use the

non-floor description.

Prompt template (for indoor; requires outputs from Sections 3.2.1.1

and 3.2.1.2):

## Task description

You are given a user prompt describing an indoor scene:
_{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
Now, generate **all** rooms the final scene has.
For each room, generate
1. its name (which must be unique);
2. its overall description, which should be as
comprehensive and detailed as possible, covering topics
including (but **not** limited to)
(i) purpose of existence (i.e., why would one need
such room);
(ii) example objects that are likely to exist (i.e.,
when people are talking about such room, what objects
pop up in their mind);
(iii) expected human activities (i.e., what can people
do in the room); and
(iv) atmosphere (i.e., how would one feel when staying
inside the room);

3. a description of its three-dimensional shape;
4. a description of its floor material (including color
and texture); and
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5. a description of its wall (i.e., non-floor) material
(including color and texture).

## Guidance

- Do **not** generate rooms **not** requested by the
user.
- Each room **must** have a flat floor.
- When describing the shape of each room, **only**
mention the overall shape when viewed from outside. You
**must not** mention anything like atmosphere or objects
inside the room.
- Do **not** output the (estimated) dimension of each
room.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the required information you need
to generate:

{{
"regions": {{
"<FILL_IN_ROOM_NAME_1>": {{
"overall_description": "<FILL_IN>",
"shape_description": "<FILL_IN>",
"floor_material": "<FILL_IN>",
"non_floor_material": "<FILL_IN>"

}},
"<FILL_IN_ROOM_NAME_2>": {{
"overall_description": "<FILL_IN>",
"shape_description": "<FILL_IN>",
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"floor_material": "<FILL_IN>",
"non_floor_material": "<FILL_IN>"

}},
...

}}
}}

Prompt template (for outdoor; requires outputs from Sections 3.2.1.1

and 3.2.1.2):

## Task description

You are given a user prompt describing an outdoor scene:
_{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
Now, generate **all** areas the final scene has.
For each area, generate
1. its name (which must be unique);
2. its overall description, which should be as
comprehensive and detailed as possible, covering topics
including (but not limited to):
(i) purpose of existence (i.e., why would one need
such area);
(ii) example objects that are likely to exist (i.e.,
when people are talking about such area, what objects
pop up in their mind);
(iii) expected human activities (i.e., what can people
do in the area); and
(iv) atmosphere (i.e., how would one feel when staying
inside the area);

3. a description of its three-dimensional shape;

## Guidance

- {area_def}
- Do **not** generate areas **not** requested by the
user.
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- Do **not** output the (estimated) dimension of each
area.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the required information you need
to generate:

{{
"regions": {{
"<FILL_IN_AREA_NAME_1>": {{
"overall_description": "<FILL_IN>",
"shape_description": "<FILL_IN>"

}},
"<FILL_IN_AREA_NAME_2>": {{
"overall_description": "<FILL_IN>"
"shape_description": "<FILL_IN>"

}},
...

}}
}}

3.2.2.2 Region Connection

This submodule is responsible for establishing connections among regions.

The regions generated in Section 3.2.2.1 are, metaphorically, randomly

floating on the sea — their positions in the world space are not fixed. Even

if we explicitly require them to form a single connected graph, there could
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be way too many combinations. Naturally, we want to first fix which pairs

of regions are connected (i.e., objects and/or light are able to travel between

the two regions), effectively shrinking the solution space. Besides, this is

more intuitive because we want to make it clear from which regions you

can access a particular region.

For indoor scenes, we know from common sense that if we want to move

from one room to another, we have to pass through some obstructing non-

floor boundaries between the two rooms. How did people from a thousand

years ago solve this problem? They used holes and doors (which by the

way are something assumed to be oriented in a vertical manner, implying

the presence of a wall). So, for each connection, the LLM has to generate

the type of connection, which is one of “open” (i.e., absence of a shared

boundary between two rooms), “doorframe” (1 m or 2 m wide), “door” (1

m or 2 m wide), and “window”. For other attributes you see in the below

prompt template, please refer to Section 3.2.2.3. Though, we have genuine

concern that the LLM may find it confusing to use a window as a type of

connection. Therefore, we specifically ask the LLM to use anything but a

window for a walkable connection, and make sure all rooms together form a

single connected graph with non-window connections. One last thing is that

in order to enhance the realisticness of the final scene, we want to ensure

that one can freely enter and exit the scene (i.e., the scene itself is not a

locked/secret environment that is completely isolated and inaccessible). To

this end, we additionally define a special region “outside” which describes

the space outside the indoor structure, and request the LLM to generate at
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least one connection that links one of the rooms to “outside”.

Prompt template (for indoor; requires outputs from Sections 3.2.1.1, 3.2.1.2

and 3.2.2.1):

## Task description

You are given a user prompt describing an indoor scene:
_{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
Based on the above description, you have generated
several rooms with the following descriptions:
_{{room_descriptions}}_
Now, generate all pairs of rooms that should be
connected (i.e., objects and/or light are able to travel
between the two rooms).
For each connection, generate
1. its name (which **must** be unique);
2. its type;
3. the description of the object that will be used to
realize that connection, which should be as
comprehensive and detailed as possible, covering topics
including (but **not** limited to) its shape and
appearance (e.g., color, texture, material); and
4. 3 values (x, y, z) describing the object's dimension.

## Guidance

- We are using the left-handed coordinate system, i.e.,
the positive x-axis points rightward, the positive
y-axis points upward, and the positive z-axis points
forward.
- The length unit in this coordinate system is
**meter**.
- At least one of the rooms **must** be connected to
"outside" (a special region describing the space outside
the final building), using a door.
- Two "outside" regions **must** not simultaneously
exist in the same connection.
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- The type of connection **must** be one of {{"open",
"single_doorframe", "double_doorframe", "single_door",
"double_door", "window"}}. "open" means the mere absence
of a shared boundary between two regions;
"single_doorframe" means a 1 m wide empty rectangle on a
vertical wall between the two regions;
"double_doorframe" means a 2 m wide empty rectangle on a
vertical wall between the two regions; "single_door"
means a 1 m wide door on a vertical wall between the two
regions; "double_door" means a 2 m wide door on a
vertical wall between the two regions; "window" means a
light-passing window on a vertical wall between the two
regions.
- Make sure that **all** rooms (plus the special region
"outside") together form a **single** connected graph
with the generated **non-window** connections.
- If you think that a human being should be able to walk
back and forth between two rooms, you **must** use
anything **other than** "window".
- Do **not** generate zero for any dimension.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{room_descriptions}}_: {region_descriptions}

## Output format

Room name must be either "outside" or one of these:
{region_names}
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the required information you need
to generate:

{{
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"<FILL_IN_CONNECTION_NAME_1>": {{
"region1": "outside",
"region2": "<FILL_IN_ROOM_NAME_1>",
"type": "<FILL_IN>",
"description": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>

}},
"<FILL_IN_CONNECTION_NAME_2>": {{
"region1": "outside",
"region2": "<FILL_IN_ROOM_NAME_2>",
"type": "<FILL_IN>",
"description": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,

}},
...
"<FILL_IN_CONNECTION_NAME_3>": {{
"region1": "<FILL_IN_ROOM_NAME_3>",
"region2": "<FILL_IN_ROOM_NAME_4>",
"type": "<FILL_IN>",
"description": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>

}},
"<FILL_IN_CONNECTION_NAME_4>": {{
"region1": "<FILL_IN_ROOM_NAME_5>",
"region2": "<FILL_IN_ROOM_NAME_6>",
"type": "<FILL_IN>",
"description": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>

}},
...

}}
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Prompt template (for outdoor; requires outputs from Sections 3.2.1.1,

3.2.1.2 and 3.2.2.1):

## Task description

You are given a user prompt describing an outdoor scene:
_{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
Based on the above description, you have generated
several areas with the following descriptions:
_{{area_descriptions}}_
Now, generate all pairs of areas that should be
connected (i.e., one is able to walk back and forth
between the two areas).
For each connection, generate its name (which **must**
be unique).

## Guidance

- {area_def}
- Make sure that **all** areas together form a
**single** connected graph with the generated
connections.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{area_descriptions}}_: {region_descriptions}

## Output format

Area name must be one of these: {region_names}
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the required information you need
to generate:
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{{
"<FILL_IN_CONNECTION_NAME_1>": {{
"region1": "<FILL_IN_ROOM_NAME_1>",
"region2": "<FILL_IN_ROOM_NAME_2>"

}},
"<FILL_IN_CONNECTION_NAME_2>": {{
"region1": "<FILL_IN_ROOM_NAME_3>",
"region2": "<FILL_IN_ROOM_NAME_4>"

}},
...

}}

3.2.2.3 Object Selection

This submodule is responsible for picking the target objects in the final

scene. Since one region (no matter it is from an indoor or outdoor scene) can

already house a considerable amount of objects, asking the LLM to generate

objects in all regions at once could make the LLM pay less attention to

each region, which may in turn reduce the number of generated objects in

each region. To guarantee that the LLM can properly focus on each region,

we have to deal with each region one by one. However, our preliminary

experiments reveal that if we prompt the LLM to generate all objects in a

region together with their corresponding attributes at once, the number of

generated objects could still be below satisfactory. We think this happens

because each object has 5 attributes, and thus the LLM shifts its focus on

generating attributes rather than the actual existence of objects. To tackle

this problem, we use 3 separate prompts sequentially to select objects in

each region. Consequently, if there are nr regions, where nr is the number
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of generated regions in Section 3.2.2.1, then the total number of LLM

invocations in this submodule is 3nr.

Object names. The LLM is prompted to generate the (unique) names of

all objects, including dependent (or small) objects, i.e., objects (such as a

coffee cup) that cannot exist without relying on another object (such as a

table). Because in Section 3.2.2.2, we have already obtained objects used in

connections, it would be redundant to generate connection-related objects

here. So, we explicitly ask the LLM not to generate doors nor windows.

We also do not want the LLM to generate stairs, because currently we do

not support multi-level scenes (i.e., scenes in which one region is positioned

above another region). On the other hand, there is something we explicitly

ask the LLM to generate. No matter it is indoor or outdoor scene, people

cannot see without light. Therefore, we prompt the LLM to generate at least

one light-emitting object in each region.

Note that there are two special placeholders {region_type} and {area_

def} in the prompt template. If the scene type is classified as outdoor

(Section 3.2.1.1), then {region_type} will be “room” and {area_def}

will be nothing. Otherwise, {region_type}will be “area” and {area_def}

will the definition of an outdoor area (Section 3.2.2.1). By doing so, we can

inject necessary information to the LLM.

Prompt template (requires output from Sections 3.2.1.1, 3.2.1.2

and 3.2.2.1):

## Task description
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You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
One of your generated {region_type}s named
"{region_name}" is described by the following:
_{{region_description}}_
Now, generate the names (which must be unique) of
**all** 3D objects this particular {region_type} has.

## Guidance

{area_def}- Do **not** generate doors, windows, nor
stairs.
- You **must** simultaneously consider and return
**all** dependent objects (a.k.a. small objects, i.e.,
objects that cannot exist without relying on another
object; e.g., coffee cup on a table).
- Each {region_type} **must** have at least one
light-emitting object.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{region_description}}_: {region_description}

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the required information you need
to generate:

{{
"objects": [
"<FILL_IN_OBJECT_NAME_1>",
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"<FILL_IN_OBJECT_NAME_2>",
...

],
"lights": [
"<FILL_IN_LIGHT_NAME_1>",
"<FILL_IN_LIGHT_NAME_2>",
...

]
}}

Object relationships. Based on the generated object names, together with

the previously generated region description Section 3.2.2.1, the LLM is

prompted to infer the relationships among all objects. More specifically, the

LLM is asked to use one or more paragraphs to clearly describe how one

object relates to other objects as well as how they are positioned, with the

goal of making whoever is reading those paragraphs able to easily picture

the configuration in target region. The relationships generated here will be

of use later.

Prompt template (requires output from Sections 3.2.1.1, 3.2.1.2 and 3.2.2.1,

and object names):

## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
One of your generated {region_type}s named
"{region_name}" is described by the following:
_{{region_description}}_
In this {region_type}, you have generated the following
objects: _{{objects}}_
Now, using one paragraph, describe clearly **all**
relationships among the given objects.
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## Guidance

{area_def}- In your paragraphs, **all** objects **must**
be mentioned.
- One should be able to picture how the objects are
positioned after reading your paragraphs.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{region_description}}_: {region_description}

_{{objects}}_: {object_names}

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
<FILL_IN> represents the required information you need
to generate:

{{
"object_relationships": "<FILL_IN>"

}}

Object attributes. The LLM is prompted to generate, for each proposed

object, (1) its category (our preliminary experiments reveal that the LLM

is likely to output vague categories like furniture and component, which is

something we can tackle using prompt engineering by blacklisting nouns

like “furniture” and “fixture”), (2) a detailed description covering topics in-

cluding but not limited to (i) purpose of existence, (ii) shape, (iii) appearance
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(e.g., color), and (iv) expected actions that can be done with it, and (3) its

dimension. Semantic information from (1) and (2) can be used to retrieve the

most suitable object from an object databaseDo = {(o1, d1), . . . , (ono
, dno

)},

where oi is a 3D mesh, di is a description of the corresponding object, and

no is the number of available objects.

In particular, given an object query qo, we use

(o∗, d∗) = argmax
(o,d)∈Do

α ·max
r∈R

CLIP (r, qo) + β · SBERT (d, qo)

α + β
(3)

to find the most suitable candidate material o∗, where

SBERT (d, qo) = ˆSBERTtxt (d) · ˆSBERTtxt (qo) (4)

in which SBERTtxt (·) is the text encoder from Sentence Transformers [96]

that returns high-dimensional feature embeddings,R is the set of 2D render-

ings of o from different angles, and α and β are hyperparameters. Basically,

the most suitable object is the one that has the highest weighted average of

visual and textual similarities with the object query. We use the maximum

CLIP score among 2D renderings instead of the average because some

renderings could be looking at the back of an object, which may not be able

to fully represent the object. So, we are only interested in the rendering

that can best represent the object, in the sense that the object has the po-

tential to be this similar to the qo. Furthermore, given that the embedding

models remain unchanged, we can deduce that the same qo always gives

the same o∗. Therefore, we explicitly state in the prompt that if two objects
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are supposed to be identical, their descriptions must also be identical. In

reality, since Do is (assumed to be) fixed, we can precompute the embed-

dings ˆCLIPimg (r) ∀r ∈ Do and ˆSBERTtxt (d) ∀d ∈ Do, and save them

somewhere on the system in order to reduce generation time.

As for (3), unlike Holodeck [136], we do not use it for object retrieval.

It is because to ensure our method can adapt to any database, we cannot

assume that each object in the database is correctly scaled. So, we instead

consider the dimension from (3) an anticipated space that should be occupied

by the object, and rescale (fit or stretch) the candidate object such that it can

be put inside the 3D bounding box.

Prompt template (requires output from Sections 3.2.1.1, 3.2.1.2 and 3.2.2.1,

object names, and object relationships):

## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
One of your generated {region_type}s named
"{region_name}" is described by the following:
_{{region_description}}_
In this {region_type}, you have generated the following
objects: _{{objects}}_
These objects have the following relationships:
_{{relationships}}_
Now, for each object, generate
1. its category (which can be repeated; must be
semantically meaningful --- do **not** generate vague
categories like "furniture", "fixture", or "component");
2. its description, which should be as comprehensive and
detailed as possible, covering topics including (but
**not** limited to):
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(i) purpose of existence;
(ii) shape;
(iii) appearance (e.g., color, texture, material); and
(iv) expected actions that can done with it.

3. 3 values (x, y, z) describing its dimension.

## Guidance

{area_def}- We are using the left-handed coordinate
system, i.e., the positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis
points forward.
- The length unit in this coordinate system is
**meter**.
- If you expect several objects to be identical, their
categories and descriptions **must** also be identical.
- Do **not** generate zero for any dimension.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{region_description}}_: {region_description}

_{{objects}}_: {object_names}

_{{relationships}}_: {relationships}

## Output format

You **must** include **all** provided object names
as-is.
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<USE_GIVEN> represents a thing that you **must**
directly copy from the given information.
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<FILL_IN> represents the required information you need
to generate:

{{
"objects": {{
"<USE_GIVEN_OBJECT_NAME_1>": {{
"category": "<FILL_IN>",
"description": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>

}},
...

}},
"lights": {{
"<USE_GIVEN_LIGHT_NAME_1>": {{
"category": "<FILL_IN>",
"description": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>

}},
...

}}
}}

3.2.3 Region Construction Module

Illustrated in the third row of Figure 9, this module constructs the actual

boundaries of each region. If Section 3.2.2.1 is a designer, then this module

is an architect, digesting and utilizing information from the designer for

construction. This architect first comprehends what the designer is picturing

about and expresses those ambiguous thoughts using his own unambigu-

ous instructions. Then, solely based on these instructions, the architect

constructs the region.
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3.2.3.1 Shape Generation

This submodule is responsible for translating the high-level textual illustra-

tion of each region from Section 3.2.2.1 into something (relatively) low-level.

To a certain extent, this submodule is quite similar to a compiler in program-

ming, which translates high-level language into assembly code (something

low-level, but not the lowest). Here is also where our DSL is for the first

time directly used in the whole pipeline. In particular, the LLM is prompted,

with selected snippets of the DSL, to generate a sequence of DSL-based

statements, which are in fact definitions of common shapes and/or arbitrary

mesh (vertices and faces). These statements are supposed to represent the fi-

nal structure of the target region accurately. For instance, an L-shaped room

could be represented by the union of two touching cuboids. We believe

that using DSL as a type of intermediate output can reduce the workload of

later submodules, because they no longer have to deal with high-level se-

mantic information, but can instead directly work on lower-level processed

information that is unambiguous.

To facilitate the generation procedure, some extra requirements are added

into the prompt. First of all, the LLM must construct regions that contain a

flat ground on the XZ-plane. In this way, the LLM knows that it should put

everything else above the ground. Next, each region is required to touch at

least one other region, making sure that the regions form a single connected

graph with no physical gap in between. On a similar issue, the LLM must

also ensure that no region overlaps with any other regions. This is a very
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basic reqirement for maintaining the physical plausibility of the scene.

Prompt template (requires outputs from Sections 3.2.1.1, 3.2.1.2, 3.2.2.1

and 3.2.2.2; please replace $\in$ with “∈”):
## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
Based on the above description, you have generated
several {region_type}s with the following shape
descriptions: _{{shape_descriptions}}_
Now, using the below domain-specific language (DSL),
express the shape of each {region_type} line by line
using syntaxes from the DSL.

## Guidance

{area_def}- We are using the left-handed coordinate
system, i.e., the positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis
points forward.
- The length unit in this coordinate system is
**meter**.
- You **must** generate all shapes in **world
coordinates**.
- Keep the sequence of DSL statements of each
{region_type} **precise** and **concise**. Do **not**
output redundant DSL statements.
- The **last** statement in each DSL sequence will be
final shape of the corresponding {region_type}.
- If the scene is classified as an indoor scene, each
vertex should contain 3 values (x, y, z); otherwise,
each vertex should contain only 2 values (x, y).
- Each {region_type} **must** contain a flat ground on
the xz-plane.
- Each {region_type} **must** be sized just right,
**not** too large nor too small.
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- Each {region_type} **must** be **touching** at least
one other {region_type} **from outside**.
- Each {region_type} **must not overlap** with any other
{region_type}s.

## Domain-Specific Language (DSL)

```
shape $\in$ Shape ::= cuboid
cuboid $\in$ Cuboid ::= cuboid(corner.min, corner.max)
corner $\in$ Corner ::= min | max
```

where:
- `center`, `corner.min`, and `corner.max` are vertices.

### Examples

```
shape1 = cuboid((0, 0, 0), (3, 3, 6))
```

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{shape_descriptions}}_: {shape_descriptions}

## Output format

You **must** include all provided region names as-is.
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<USE_GIVEN> represents a thing that you **must**
directly copy from the given information.
<FILL_IN> represents the required information you need
to generate:
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{{
"<USE_GIVEN_REGION_NAME_1>": [
"<FILL_IN_SHAPE_DSL_1>",
"<FILL_IN_SHAPE_DSL_2>",
...

],
...

}}

3.2.3.2 Mesh Generation

This submodule is responsible for parsing the DSL-based statements from

Section 3.2.3.1 into the basis of any 3D model: its mesh (we use Ps to

denote this parser). Given how low-level the output of Ps is, if we again

use a compiler to analogize Section 3.2.3.1, then it would reasonable to use

an assembler to analogize Ps. A mesh is made up of a set of vertices V

and a set of faces. The vertices are just (2D or 3D) points in the coordinate

system you are working with. The faces, on the other hand, are slightly

more complicated.

Every face consists of 3 distinct indices, each corresponding to one (and

only one) vertex in V , ultimately forming a triangle. This may sound trivial,

but the order of the 3 indices of each face is also something we must pay

attention to. Basically, it controls the direction of the surface normal of that

face. For example, if the order (0, 1, 2) results in a surface normal that

points towards you, then (0, 2, 1) results in a surface normal that points

away from you. Why does it matter? In most 3D modelling software, we

can see a surface only if its normal forms an angle less than 90° with us (this
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is known as backface culling). In other words, the order of indices of each

face determines the visibility of that face.

After Ps finishes its job, we essentially possess the actual 3D model of

each region.

In this report, for simplicity, we use an LLM as Ps. Specifically, the

LLM is first prompted to generate a minimal set of vertices necessary for

outlining the outermost surface of each region. For example, if the region

has the shape of a cuboid, then the LLM should output 8 coordinates. We

incorporate the adjective “minimal” because we want to reduce the chance

of the LLM outputting redundant vertices that are useless for constructing

the region.

Prompt template (requires outputs from Sections 3.2.1.1, 3.2.1.2, 3.2.2.1

and 3.2.3.1; please replace $\in$ with “∈”):
## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
Using the below domain-specific language (DSL), your
generated {region_type}s' shapes are described by the
following DSL statements: _{{dsl}}_
Now, for each {region_type}, generate a **minimal** set
of vertices necessary for constructing the outermost
surface.

## Guidance
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{area_def}- We are using the left-handed coordinate
system, i.e., the positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis
points forward.
- The length unit in this coordinate system is
**meter**.
- You **must** generate all vertices in **world
coordinates**.
- The **last** statement in each DSL sequence is final
shape of the corresponding {region_type}.
- If the scene is classified as an indoor scene, each
vertex should contain 3 values (x, y, z); otherwise,
each vertex should contain only 2 values (x, y).
- Do **not** output **redundant** vertices (i.e.,
vertices without which the overall shape will not
change).
- Each {region_type} **must** contain a flat ground on
the xz-plane.
- Each {region_type} **must** be sized just right,
**not** too large nor too small.
- Each {region_type} **must** be **touching** at least
one other {region_type} **from outside**.
- Each {region_type} **must not overlap** with any other
{region_type}s.

## Domain-Specific Language (DSL)

```
shape $\in$ Shape ::= cuboid
cuboid $\in$ Cuboid ::= cuboid(corner.min, corner.max)
corner $\in$ Corner ::= min | max
```

where:
- `center`, `corner.min`, and `corner.max` are vertices.

## Known information

_{{user_prompt}}_: {prompt}
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_{{scene_description}}_: {scene_description}

_{{dsl}}_: {dsl}

## Output format

You **must** include **all** provided {region_type}
names as-is.
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
<USE_GIVEN> represents a thing that you **must**
directly copy from the given information.
<FILL_IN> represents the required information you need
to generate:

{{
"<USE_GIVEN_REGION_NAME_1>": [
[<FILL_IN>, ...],
...

],
...

}}

Equipped with these vertices, the LLM then generates a minimal set of

faces necessary for constructing a triangular mesh of the region. We again

use “minimal” because we do not want the LLM to output erroneous faces

that are placed inside the region. Instead, we want the LLM to only focus

on the outermost structure of the region.

Prompt template (requires outputs from Sections 3.2.1.1, 3.2.1.2, 3.2.2.1

and 3.2.3.1, and mesh vertices; please replace $\in$ with “∈”):
## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
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You have generated a description for the scene:
_{{scene_description}}_
Using the below domain-specific language (DSL), your
generated {region_type}s' shapes are described by the
following DSL statements: _{{dsl}}_
For each {region_type}, you have further generated a
**minimal** set of vertices necessary for constructing
the outermost surface: _{{vertices}}_
Now, for each {region_type}, generate a **minimal** set
of faces necessary for constructing a **triangular**
mesh with the vertices provided.

## Guidance

{area_def}- We are using the left-handed coordinate
system, i.e., the positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis
points forward.
- The length unit in this coordinate system is
**meter**.
- The **last** statement in each DSL sequence is final
shape of the corresponding {region_type}.
- Each face **must** contain exactly 3 indices of
vertices.
- For each mesh, the maximum index used in "faces"
**must** be **less than** the number of vertices.
- Keep the mesh of each {region_type} **precise** and
**concise**.
- Each mesh **must** be **watertight** (i.e., each edge
is shared by exactly two faces).
- Each mesh **must not** contain vertices or faces
underneath the outermost surface.
- Each {region_type} **must** contain a flat ground on
the xz-plane.
- Each {region_type} **must not** collide with any other
{region_type}s.

## Domain-Specific Language (DSL)

```
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shape $\in$ Shape ::= cuboid
cuboid $\in$ Cuboid ::= cuboid(corner.min, corner.max)
corner $\in$ Corner ::= min | max
```

where:
- `center`, `corner.min`, and `corner.max` are vertices.

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{dsl}}_: {dsl}

_{{vertices}}_: {vertices}

## Output format

You **must** include **all** provided {region_type}
names as-is.
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
<USE_GIVEN> represents a thing that you **must**
directly copy from the given information.
<FILL_IN> represents the required information you need
to generate:

{{
"<USE_GIVEN_REGION_NAME_1>": [
[<FILL_IN>, <FILL_IN>, <FILL_IN>],
...

],
...

}}

Because our preliminary experiments reveal that LLMs perform rela-

tively poor when it comes to generating shapes other than cuboid (e.g.,
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ellipsoid or raw mesh) as well as dealing with binary operations (union,

intersection, subtraction) between two regions, we intentionally omit the

relevant DSL syntaxes in the above 3 prompt templates. However, we

emphasize that this is only a problem with (current) LLMs. If we implement

a non-LLM-based parser (which is in fact one of our future objectives), we

will be able to generate all sorts of shapes.

3.2.4 Object Placement Module

Illustrated in the fourth row of Figure 9, this final module strategically

places selected objects from Section 3.2.2.3 to their optimal position in the

scene.

3.2.4.1 Constraint Generation

This submodule is responsible for unambiguously determining the relation-

ships between each region and all objects inside that region. By injecting

selected snippets of our DSL, together with the textual relationships from

Section 3.2.2.3, into the prompt, we ask the LLM to generate all DSL-based

constraints that are required to make the final scene as realistic and phys-

ically plausible as possible. With more constraints, we can more easily

shrink the solution space and predict the outcome. Nonetheless, preliminary

experiments reveal that simply mentioning “realistic and physically plausi-

ble” is not sufficient. Therefore, we explicitly state that (1) each object’s

y-coordinate must be at least half of its height (so that it does not penetrate

the ground), (2) all objects must be positioned inside their corresponding
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region, and (3) no object should overlap with its corresponding region’s

boundaries and with other objects.

Prompt template (requires outputs from all previous submodules; please

replace $\in$ with “∈”):
## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
You have also generated a high-level world view of the
final scene: _{{scene}}_
Now, using the below domain-specific language (DSL),
generate
1. **all** constraints on **all** objects in each region
that are mandatory or desired to make the scene as
**realistic** and **physically plausible** as possible;
and
2. **all other** constraints that are related to the
**overall** scene (e.g., connections).

## Guidance

{area_def}- We are using the left-handed coordinate
system, i.e., the positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis
points forward.
- The length unit in this coordinate system is
**meter**.
- Each object's `pos_y` must be **at least** half of its
`dim_y`.
- **All** objects **must** be positioned **inside**
their corresponding region.
- Make sure **no** object overlaps with its
corresponding region's boundaries and with other
objects.

## Domain-Specific Language (DSL)
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```
constraints $\in$ Constraints ::= constraint |
constraint; constraints
constraint $\in$ Constraint ::= spatial_condition |
probabilistic_condition | temporal_condition |
object_relation | visibility_condition |
physical_constraint | user_defined(logic, priority)
spatial_condition $\in$ SpatialCondition ::=
inside(region) | outside(region) | above(object, height)
| below(object, height) | nearby(object, distance) |
alignedWith(object, axis) | tangentTo(surface) |
distanceBetween(object1, object2) == d
probabilistic_condition $\in$ ProbabilisticCondition ::=
probability(p): condition | distributionBased(object,
param: distribution) | resample(object, param)
temporal_condition $\in$ TemporalCondition ::=
always(condition) | eventually(condition) |
until(condition1, condition2) | next(condition) |
during(interval, condition)
object_relation $\in$ ObjectRelation ::=
relation(object1, object2, relation_type)
relation_type $\in$ RelationTypes ::= above | below |
inside | outside | nearby | aligned | occludes |
intersects
visibility_condition $\in$ VisibilityCondition ::=
canSee(observer, target) | occludes(object1, object2) |
visibleInRegion(observer, region) |
rayTraceValid(observer, target, density)
physical_constraint $\in$ PhysicalConstraint ::=
noCollision(object1, object2) |
collisionFreeRegion(region) | stablePosition(object) |
gravityAligned(object)
user_defined $\in$ UserDefinedConstraint ::=
customLogic(logicExpression, priority)
position $\in$ Position ::= (x, y, z) | offset(position,
vector) | relativeTo(reference)
rotation $\in$ Rotation ::= (roll, pitch, yaw) |
relativeTo(reference)
lights $\in$ Lights ::= light | light; lights
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light $\in$ Light ::= id ← light(category, description,
intensity, position, visibility)
intensity $\in$ Intensity ::= float | distribution
```

## Known information

_{{user_prompt}}_: {prompt}

_{{scene_description}}_: {scene_description}

_{{scene}}_: {scene}

## Output format

You **must** include all provided region names as-is.
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<USE_GIVEN> represents a thing that you **must**
directly copy from the given information.
<FILL_IN> represents the required information you need
to generate:

{{
"regions": {{
"<USE_GIVEN_REGION_NAME_1>": [
"<FILL_IN_CONSTRAINT_DSL_1>",
"<FILL_IN_CONSTRAINT_DSL_2>",
...

],
...

}},
"overall": [
"<FILL_IN_CONSTRAINT_DSL_3>",
"<FILL_IN_CONSTRAINT_DSL_4>",
...

]
}}
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3.2.4.2 Constraint Satisfaction

This submodule is responsible for solving the constraints generated in Sec-

tion 3.2.4.1. In other words, this module acts as a constraint solver (we use

Sc to denote it), computing all unspecified positions and orientations.

In this report, for simplicity, we use an LLM as Sc. Specifically, the LLM

is prompted to generate the position and rotation of each object (including

objects used for connecting two regions), as well as the positions of point

lights. Again, we need lights because realistically speaking, there is no

vision if there is no light. We use point light only because it is the easiest to

implement while being sufficient to test our DSL.

Prompt template (requires outputs from all previous submodules; please

replace $\in$ with “∈”):
## Task description

You are given a user prompt describing an {scene_type}
scene: _{{user_prompt}}_
You have generated a description for the scene:
_{{scene_description}}_
You have also generated a high-level world view of the
final scene: _{{scene}}_
Now, based on the given constraints driven by the below
domain-specific language (DSL), generate a corresponding
scene by computing the optimal solution.
Particularly, for each object, generate
1. 3 values (x, y, z) describing its position in **world
coordinates**; and
2. 3 values (pitch, yaw, roll) describing its rotation
in Euler Angles (degree, not radian).
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Next, in each anticipated region, generate 3 values (x,
y, z) describing the positions (in **world
coordinates**) of **all** point lights, whcih should
match the light-emitting part of the corresponding
light-emitting object.
Furthermore, for each connection object, generate
1. 3 values (x, y, z) describing its position in **world
coordinates**; and
2. 3 values (pitch, yaw, roll) describing its rotation
in Euler Angles (degree, not radian).

## Guidance

{area_def}- We are using the left-handed coordinate
system, i.e., the positive x-axis points rightward, the
positive y-axis points upward, and the positive z-axis
points forward.
- The length unit in this coordinate system is
**meter**.
- Each object's `pos_y` must be **at least** half of its
`dim_y`.
- **All** objects are positioned **inside** their
corresponding region.
- Make sure **no** object overlaps with its
corresponding region's boundaries and with other
objects.

## Domain-Specific Language (DSL)

```
constraints $\in$ Constraints ::= constraint |
constraint; constraints
constraint $\in$ Constraint ::= spatial_condition |
probabilistic_condition | temporal_condition |
object_relation | visibility_condition |
physical_constraint | user_defined(logic, priority)
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spatial_condition $\in$ SpatialCondition ::=
inside(region) | outside(region) | above(object, height)
| below(object, height) | nearby(object, distance) |
alignedWith(object, axis) | tangentTo(surface) |
distanceBetween(object1, object2) == d
probabilistic_condition $\in$ ProbabilisticCondition ::=
probability(p): condition | distributionBased(object,
param: distribution) | resample(object, param)
temporal_condition $\in$ TemporalCondition ::=
always(condition) | eventually(condition) |
until(condition1, condition2) | next(condition) |
during(interval, condition)
object_relation $\in$ ObjectRelation ::=
relation(object1, object2, relation_type)
relation_type $\in$ RelationTypes ::= above | below |
inside | outside | nearby | aligned | occludes |
intersects
visibility_condition $\in$ VisibilityCondition ::=
canSee(observer, target) | occludes(object1, object2) |
visibleInRegion(observer, region) |
rayTraceValid(observer, target, density)
physical_constraint $\in$ PhysicalConstraint ::=
noCollision(object1, object2) |
collisionFreeRegion(region) | stablePosition(object) |
gravityAligned(object)
user_defined $\in$ UserDefinedConstraint ::=
customLogic(logicExpression, priority)
position $\in$ Position ::= (x, y, z) | offset(position,
vector) | relativeTo(reference)
rotation $\in$ Rotation ::= (roll, pitch, yaw) |
relativeTo(reference)
lights $\in$ Lights ::= light | light; lights
light $\in$ Light ::= id ← light(category, description,
intensity, position, visibility)
intensity $\in$ Intensity ::= float | distribution
```

## Known information

_{{user_prompt}}_: {prompt}
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_{{scene_description}}_: {scene_description}

_{{scene}}_: {scene}

## Output format

You **must** include all provided region, object, and
connection names as-is.
You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<USE_GIVEN> represents a thing that you **must**
directly copy from the given information.
<FILL_IN> represents the required information you need
to generate:

{{
"regions": {{
"<USE_GIVEN_REGION_NAME_1>": {{
"objects": {{
"<USE_GIVEN_OBJECT_NAME_1>": {{
"pos_x": <FILL_IN>,
"pos_y": <FILL_IN>,
"pos_z": <FILL_IN>,
"rot_x": <FILL_IN>,
"rot_y": <FILL_IN>,
"rot_z": <FILL_IN>

}},
...

}},
"point_lights": [
{{
"pos_x": <FILL_IN>,
"pos_y": <FILL_IN>,
"pos_z": <FILL_IN>

}},
...

]
}},
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...
}},
"connections": {{
"<USE_GIVEN_CONNECTION_NAME_1>": {{
"pos_x": <FILL_IN>,
"pos_y": <FILL_IN>,
"pos_z": <FILL_IN>,
"rot_x": <FILL_IN>,
"rot_y": <FILL_IN>,
"rot_z": <FILL_IN>

}},
...

}}
}}

Up to this point, the entire scene, which is saved as a JSON file, is

generated. We can then upload the JSON file to some 3Dmodeling software

to build a playable scene.
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4 Experiments

4.1 Implementation Details

Both Do and Dm are from Holodeck [136], which extracts around 50K

objects from Objaverse [22] and annotates them using OpenAI’s gpt-4-

1106-preview. Unless otherwise specified, we use OpenAI’s gpt-4o-

2024-08-06 as our LLM throughout our pipeline. We also by default

set the temperature parameter to 0 when we are invoking an LLM. For

Equation (2), we employ OpenCLIP’s implementation [48] of the ViT-L/14

variant trained on the LAION-2B dataset [103]. For Equation (4), we use the

all-mpnet-base-v2 model [47] from Sentence Transformers [96]. We

use Blender7 for generating region meshes and handling 3D objects in Do.

We use Unity Editor8 to put the region meshes and selected objects together

to compose a playable scene (which is automatically converted into an

executable). All experiments are conducted on an Apple MacBook Pro

with M1 Pro CPU and 16 GB of system memory. The time required for the

whole pipeline (from scene type classification to constraint solving) ranges

from 45 seconds to 14 minutes, with a mean of 2.5 minutes. This of course

depends on the number of regions and the number of objects in each region

as these affect how much time the LLM takes to respond.

7Version 4.3
8Version 6000.0.24f1
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4.1.1 System Prompt

All conversations with LLM (except the one in Section 4.1.3) use the fol-

lowing system prompt. We utilize role playing to make the LLM strictly

follow instructions.

System prompt:

You are a professional indoor/outdoor virtual scene
designer.
Your job is to, given a text prompt from a client,
convert that prompt into a 3D scene.
You **must** strictly follow the requirements of your
clients.
You **must** also adhere to any guidance provided.
Make sure that the scenes you generate are **realistic**
and **physically plausible**.
You need to respond in JSON format.

4.1.2 Baseline

To evaluate the effectiveness of our pipeline in making generated scenes

more realistic, we set up a baseline that invokes GPT-4o only once to obtain

a minimal JSON file.

Prompt template:

## Task description

You are given a user prompt: {prompt}
Please generate a corresponding scene.

## Guidance
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- We are using the left-handed coordinate system, i.e.,
the positive x-axis points rightward, the positive
y-axis points upward, and the positive z-axis points
forward.

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the description you need to
generate:

{{
"scene_type": "indoor/outdoor",
"regions": {{
"<FILL_IN_REGION_NAME_1>": {{
"floor_material": "<FILL_IN>",
"non_floor_material": "<FILL_IN>",
"mesh": {{
"vertices": [
[<FILL_IN>, ...],
...

],
"faces": [
[<FILL_IN>, <FILL_IN>, <FILL_IN>],
...

]
}},
"objects": {{
"<FILL_IN_OBJECT_NAME_1>": {{
"category": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>,
"pos_x": <FILL_IN>,
"pos_y": <FILL_IN>,
"pos_z": <FILL_IN>,
"rot_x": <FILL_IN>,
"rot_y": <FILL_IN>,
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"rot_z": <FILL_IN>
}},
...

}},
"point_lights": [
{{
"pos_x": <FILL_IN>,
"pos_y": <FILL_IN>,
"pos_z": <FILL_IN>

}},
...

]
}},
...

}},
"connections": [
{{
"type": "<FILL_IN>",
"dim_x": <FILL_IN>,
"dim_y": <FILL_IN>,
"dim_z": <FILL_IN>,
"pos_x": <FILL_IN>,
"pos_y": <FILL_IN>,
"pos_z": <FILL_IN>,
"rot_x": <FILL_IN>,
"rot_y": <FILL_IN>,
"rot_z": <FILL_IN>

}},
...

]
}}

4.1.3 Testing Prompts

To test the robustness of our method using multiple prompts, we employ

GPT-4o to effciently generate a large set of n diverse prompts that cover a

variety of scenarios.

83



Prompt template:

## Task description

You are using a system that can, based on a given text
prompt, automatically generate a corresponding
high-quality 3D scene.
Now, you want to test how the system handles
**{scene_type}** scenes.
Please generate a **diverse** set of {n} prompts.

## Guidance

- **All** scenes must contain **only** {scene_type}
objects.
- **Half** of the scenes **must** contain two or more
regions (rooms/areas).
- **All** scenes must contain only **one** level (i.e.,
no region is positioned above another region).
- Make sure that **no** two prompts are semantically
similar to each other.

## Examples

- Japanese-style living room
- An arcade room with a pool table
- A sculpture museum with diverse statues
- A 1b1b apartment of a researcher who has a cat
- Three professors' office connected to a long hallway,
the professor in office 1 is a fan of Star Wars

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
<FILL_IN> represents the prompt you need to generate:

{{
"1": "<FILL_IN>",
"2": "<FILL_IN>",
...
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Figure 10: An example of wireframe.

"{n}": "<FILL_IN>"
}}

Note, however, that since the object database Do used in this report

contains only indoor objects, we only use the above prompt template to

generate indoor-oriented prompts.
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4.1.4 Evaluation Metrics

4.1.4.1 Quantitative

Following [68] and [136], we measure the visual similarities between 2D

renderings of a generated scene and relevant text queries using CLIP [92]:

ScoreCLIP (r, q) = (CLIP (r, q) + 1)× 50 (5)

where r is a 2D rendering and q is a text query. We do not directly use

Equation (2) because dot product between two normalized vectors results

in a number between -1 and 1, and we want to rescale it such that it lies

between 0 and 100 (for graphing purposes). For the 2D renderings (which

consist of 120 camera angles with pitch ∈ {0, 30, 45, 60, 90} and yaw ∈

{0, 15, 30, . . . , 330, 345}), rather than showing the actual textured scene

boundaries (i.e., floor and wall), we instead show the wireframe of the

boundaries (see Figure 10). We choose this approach because we do not

want walls of one room obstructing objects in other rooms. For the text

queries, we first consider the sentence “an image of a vibrant indoor scene”

(denote as C1) and the original user prompt (denote as C2). If the baseline

method (Section 4.1.2) is not being used, then we also consider the scene

description generated by LLM in Section 3.2.1.2 (denote as C3).

Speaking of scene description, since our pipeline depends on the con-

tents in the description, we also measure the textual similarity between the
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Figure 11: An example of bird’s-eye view.

generated scene description and the original user prompt using SBERT [96]:

ScoreSBERT (d, p) = (SBERT (d, p) + 1)× 50 (6)

where d is the scene description and p is the user prompt.

4.1.4.2 Qualitative

To mimic human evaluation, we give GPT-4o a bird’s-eye view (see Fig-

ure 11) of a generated scene and ask it to rate the generated scene from 1 to
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10 (with 10 being the best) by considering 4 questions:

1. Does the generated scene contain every regionmentioned in the prompt?

2. Does the generated scene contain every object mentioned in the prompt?

3. Is the generated scene physically plausible (e.g., are there any objects

colliding with region boundaries or other objects)?

4. Is the generated scene visually pleasing?

We do not send renderings from other angles because at those angles,

some objects could be obstructed by other objects and region boundaries,

negatively affecting the LLM’s decision-making. Also, sending multiple

images considerably increases evaluation time.

Prompt template:

## Task description

You are a harsh tester.
Your job is to test the performance of a system that,
given a text prompt, generates a 3D scene based on the
prompt.
Now, you are given an image (bird's-eye view) of a 3D
scene generated based on the following prompt: {prompt}
Please measure the extent of correlation between the
prompt and the corresponding generated scene.
In particular, you first elaborate in detail about
whether the image match the prompt.
Then, rate the generated scene (from 1 to 10
inclusively, the higher the better) by considering the
following questions:
1. Does the generated scene contain every region
mentioned in the prompt?
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2. Does the generated scene contain every object
mentioned in the prompt?
3. Is the generated scene physically plausible (e.g.,
are there any objects colliding with region boundaries
or other objects)?
4. Is the generated scene visually pleasing?

## Output format

You should respond in **JSON ONLY**.
**DO NOT** output other contents, **not even comments**.
**DO NOT** miss any fields.
<FILL_IN> represents the required information you need
to generate:

{{
"elaboration": "<FILL_IN>",
"region_score": <FILL_IN_1_TO_10>,
"object_score": <FILL_IN_1_TO_10>,
"physical_score": <FILL_IN_1_TO_10>,
"visual_score": <FILL_IN_1_TO_10>

}}

4.2 Results

4.2.1 Comparing with Baseline

We generate a set of 50 prompts and use them to test both our DSL-based

pipeline and the baseline. For each method, every prompt is ran 3 times,

generating a total of 300 scenes.

We show quantitative results comparing C1 and C2 of our DSL-based

pipeline and the baseline in Figure 12. Our pipeline has means of 57.298

and 58.316 respectively, while the baseline has means of 56.130 and 57.019

respectively. While the differences are not that significant, we should bear in
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Figure 12: CLIP score comparison between our DSL-based pipeline and the baseline.

“Type” refers to C1 and “Prompt” refers to C2.

Average # of regions Average # of objects

DSL 1.36 20.973

Baseline 1.35 3.63

Table 1: Comparison between the number of regions and number of objects generated by

our DSL-based pipeline and the baseline.

mind that the CLIP models are trained with real-life images, many of which

have a main subject, rather than compositions of objects in a virtual scene.

In other words, the CLIP models may not be highly sensitive to renderings

of virtual scenes. Given the insensitiveness, the small differences could

mean a lot.

We also compare the number of regions and number of objects generated

by the two methods in Table 1. While both of them on average generate very
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Figure 13: Qualitative comparison between our DSL-based pipeline and the baseline.

similar number of regions, it is obvious that our DSL-based pipeline can

generate far more number of objects, demonstrating our proposed method’s

capability of generating more vibrant scenes. This would be very useful

if the user does not want to input a lengthy prompt but still expects to see

many objects.

We further show qualitative results from our LLM evaluator in Figure 13.

While they receive similar score regardingmatching regions (same the above

quantitative results, which is because the LLM is not allowed to generate

whatever regions it desires), their performance in matching objects and

producing visually pleasing scenes differs a lot. This again demonstrates

that our DSL-based approach can better follow the requirements stated

(explicitly or implicitly) in user prompts while still producing scenes with

higher quality. As of why they have similar physical score (about whether

the generated scene is physically plausible), we believe it is because the
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LLM cannot determine whether an object has penetrated the floor from

bird’s-eye view.

Figures 14 and 15 show two side-by-side comparisons between the two

approaches.

4.2.2 Comparing different Temperatures

We generate a set of 20 prompts and use them to test how the performance

of our DSL-based framework changes as we vary the temperature parameter

of GPT-4o. We pick 0, 0.2, and 0.5 as our subjects. For each temperature,

every prompt is ran 2 times, generating a total of 120 scenes.

We show quantitative results comparing temperature 0 with 0.2 and

0.5 in Figure 16 and Figure 17 respectively. Apparently, our pipeline

remains relatively stable in different temperature settings. Nonetheless, as

we increase the temperature parameter, a slight performance gain can be

observed (particularly in Figure 17). This suggests that if we do not require

the LLM to be highly deterministic, it maybe able to unleash its “creativity”

to generate a more relevant scene.

We also show qualitative results comparing temperature 0 with 0.2 and

0.5 in Figure 18 and Figure 19 respectively. Surprisingly, they have identical

medians and interquartile ranges. This suggests that the LLM evaluator does

not really care about the subtle differences brought by different temperatures.

This is also very human-like, as one would tend to give two things identical

rating if they are very similar to each other.
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(a) DSL

(b) Baseline

Figure 14: Side-by-side comparison of the scene generated from the prompt: “A colorful

nursery with a crib, rocking chair, and playful decor.”
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(a) DSL

(b) Baseline

Figure 15: Side-by-side comparison of the scene generated from the prompt: “A quaint

breakfast nook with a round table and cushioned bench seating.”
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Figure 16: Quantitative comparison between temperatures 0 and 0.2.

Figure 17: Quantitative comparison between temperatures 0 and 0.5.

4.2.3 Comparing different LLMs

Using the same set of prompts and the same procedure in Section 4.2.2,

we test how another LLM from OpenAI, gpt-4o-mini-2024-07-18, per-

forms.

We show quantitative results comparing gpt-4o-2024-08-06 and gpt-

4o-mini-2024-07-18 in Figure 20. Unsurprisingly, gpt-4o-mini per-
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Figure 18: Qualitative comparison between temperatures 0 and 0.2.

Figure 19: Qualitative comparison between temperatures 0 and 0.5.

forms significantly worse than gpt-4o, even though gpt-4o-mini has

a slightly higher SBERT score. This aligns with our expectation, as it is

known gpt-4o-mini has lower processing and generative capabilities. This

is also confirmed by the qualitative results in Figure 21.
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Figure 20: Quantitative comparison between gpt-4o-2024-08-06 and gpt-4o-mini-
2024-07-18. “DSL” refers to the use of gpt-4o-2024-08-06 while “DSL_mini” refers

to gpt-4o-mini-2024-07-18.

Figure 21: Qualitative comparison between gpt-4o-2024-08-06 and gpt-4o-mini-
2024-07-18. “DSL” refers to the use of gpt-4o-2024-08-06 while “DSL_mini” refers

to gpt-4o-mini-2024-07-18.

Weactually also tested claude-3-5-sonnet-20241022 fromAnthropic.

However, due to some technical problems (probably because our prompts

are quite long), only 5 scenes were successfully generated, outputting a total

of 600 2D renderings. Though, since the results are already here, we think
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Figure 22: Quantitative comparison between gpt-4o-2024-08-06 and claude-3-5-
sonnet-20241022. “DSL” refers to the use of gpt-4o-2024-08-06while “DSL_Claude”
refers to claude-3-5-sonnet-20241022.

Figure 23: Qualitative comparison between gpt-4o-2024-08-06 and claude-3-5-
sonnet-20241022. “DSL” refers to the use of gpt-4o-2024-08-06while “DSL_Claude”
refers to claude-3-5-sonnet-20241022.

it is still worth it to put them in this report. While the qualitative results in

Figure 23 does not tell a lot (apart from the fact that textttclaude-3-5-sonnet-

20241022 has a slightly higher object-matching score), the quantitative

results in Figure 22 are quite interesting, as they are generally higher than
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the gpt-4o-2024-08-06 counterparts. Particularly, the SBERT score of

claude-3-5-sonnet-20241022 is significantly higher. This could be the

evidence that if an LLM can write a better scene description, then the corre-

sponding generated scene would also be better. The higher SBERT score

could also be a sign that claude-3-5-sonnet-20241022 has a superior

writing capability when compared to gpt-4o-2024-08-06.
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5 Conclusion and Future Work

We propose Scenethesis, a novel method that can systematically and au-

tomatically generate a playable virtual scene from a single user prompt.

By utilizing a modular pipeline, which includes Scene Analysis, Scene

Conceptualization, Region Construction, and Object Placement, the tool en-

sures that each aspect of the scene is meticulously crafted to align with user

specifications. Using our novel ScenethesisLang, Scenethesis can generate

instruction-guided virtual scenes unambiguously. Experiments show that

our method can improve the realisticness when compared to a baseline.

Ultimately, Scenethesis stands as a new tool for scene synthesis, blending

advanced AI capabilities with a user-centric design philosophy. As future

developments aim to refine the underlying technologies, the potential for

even more dynamic and responsive scene generation remains promising,

opening new directions for creative applications in virtual environments.

In the future, we will try exploring different shape parser and constraint

solver, so as to not solely rely on the processing and generative capabili-

ties of LLM. This is something current LLMs still fail to do, particularly

constraint solving, which is a very complex task. We believe that if we can

implement a robust constraint solver, our scenes can be much more realistic

and physically plausible.

Another thing we can do is to use not just object database. Perhaps

we can find some object generation models that can generate high-quality
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meshes. Then, when we are quering for an object, if the weighted CLIP and

SBERT score is lower than a certain threshold, then we can use the object

generation model. In this way, we are assured that if a certain desired object

does not exist in the database, we still have a way to get that object.

Lastly, of course, is our journey to fully automatic XR testing. Scenethe-

sis is just the first step in XR testing, i.e., constructing an interactable scene.

With a diverse set of virtual environments in hand, we will then be able

to run different, for example, mobile AR applications, inside those envi-

ronments. As long as we have a way to retrieve depth information and

maneuver freely in the scene, we can test all sorts of functionalities of the

target application. Afterwards, we can, for instance, use a Visual Language

Model to analyze the screen recordings, detecting any abnormal events. At

that moment, fully automatic XR testing will be achieved.
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