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My Movies:

YAaHOO! MOVIES

gabe ma Edit Profile
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5-scale Ratings
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5-scale Ratings

Search for items to rate | Music =] [Enrique

Search results for Enrique in Music:

1, Escape
~ Enrigue Iglesias Rate it
X|SETONIT
Your tags: | |1 0wn It
L |(Add) (what's this?)
2, Enrigue
~ Enrique Iglesias Rate it
X| PO
Your tags: C‘ I Own It
[ | (Add) (what's this?)
3. Seven
~ Enrigue Iglesias Rate it
X|SETEONIT
Your tags: | |1 0wn It

L ) whats i)



5-scale Ratings
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Traditional Methods

+ Memory-based Methods (Neighborhood-
based Method)

« Pearson Correlation Coefficient
«= User-based, Item-based

x Etc.

+ Model-based Method

= Matrix Factorizations
«= Bayesian Models

TR R ROz
N E= 5} 9] i
(N

x Etc.



Users

User-based Method

[tems
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Matrix Factorization

NN N hoody B E 3 ks | bk
u | 5 2 3 4 i) 2 25 3 48 4 |22 48
u, 4 3 b U, 3024 29 5 41 16 47
U 4 2 2 4 i 1.7 2 32 39 30 2 4
, u, 48 21 27 26 47 38 24 49
us 5 1 2 4 3 I 1 2 34 4 32 15 46
ug 4 3 2 E 5 e | 4 32029 24 34 3 5
[1.551.22 0.37 0.81 0.62 —0.01] [ 1.00 —0.05 —0.24 0.26 1.28 0.54 —0.31 0.52]
0.360.91 1.21 0.39 1.10 0.25 0.19 —0.86 —0.72 0.05 0.68 0.02 —0.61 0.70
0.59 0.20 0.14 0.83 0.27 151 | V=1049 0.09 —0.05 —0.620.12 0.08 0.02 1.60
0.391.33 —0.43 0.70 —0.90 0.68 —0.40 0.70 027 —0.270.99 0.44 0.39
11.050.11 0.17 1.18 1.81 0.40 | | 1.49 —1.00 0.06 0.05 0.230.01 —0.36 0.80

0.74
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Challenges

YAaHOO! MOVIES

My Movies: gabe _ma Edit Profile

+ Data sparsity problem

;p VWatch the Trailer

My Blueberry Nights (2008)

The Critics:

I reviews

Yahoo! Users:

B-

667 ratings

The Critics:

Vicky Cristina Barcelona (PG-13)
Showtirnes & Ticketz | Add to My Lists

"

2
# Yahoo! Users: B 1923 ratings
| B+ 13 raviews

) Don't Recommend Again

Seen It? Fate It!

My Grade: A
A+ B
Oscar-worthy C
D

write a review F

The Duchess (PG-13)
Showtirmes & Tickets | Add to My Lists

Yahoo! Users: B+ 953 ratings
The Critics: B- 10 reviews

) Don't Recommend &gain Seen It? Rate It!

See All Recommendations
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+ Data sparsity problem

My Mowe Ratings

The Critics:

) My Rating: A+

Yahoo! Users:
The Critics:

£ My Rating: A+

Yahoo! Users:
The Critics:

. My Rating: A

B-

B-
B-

A-
A

Challenges

The Pursuit of Happyness (PG-13, 1 hr. 57 min.)
Buy DVD | Add to My Lists

Yahoo! Users: B+ 38992 ratings

13 reviews

My Blueberry Nights (PG-13, 1 hr. 30 min.)
Buy DVD | Add to My Lists

756 ratings
7 reviews

The Lord of the Rings: The Fellowship of the Ring
Buy DVD | Add to My Lists

110957 ratings
15 reviews

Prrv Rt . e |

Finding Nemo (G, 1 hr. 40 min.)
Buy DVD | Add to My Lists

Yahoo! Users: B+ 137394 ratings
The Critics: A- 14 reviews

&7 My Rating: A

Cold Mountain (R, 2 hrs. 35 min.)
Buy DVD | Add to My Lists

Yahoo! Users: B 38986 ratings
The Critics: B+ 10 reviews

.’ My Rating: B+

Shrek 2 (PG, 1 hr. 32 min.)
Buy DVD | Add to My Lists

Yahoo! Users: B+ 150368 ratings
The Critics: B 15 reviews

¢’ My Rating: B
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Number of Ratings per User

sssss

Data Extracted From Epinions.com
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Challenges

% Traditional recommender systems ignore
the social connections between users

Which one
should I ready?

Recommendations
from friends

17



Traditional
Contents [ Tdrerl |
+ Chapter 3: Effective Missing Data Prediction

% Chapter 4: Recommend with Global Consistency
% Chapter 5: Social Recommendation
% Chapter 6: Recommend with Social Trust Ensemble

+ Chapter 7: Recommend with Social Distrust

Social
Recommendation 18




Chapter 5

Social Recommendation



Problem Definition

ViV Vs vy Vs Vg
u, 5 2 3
u, | 4 3 !
u 2 2
u, | 5 3
U, 5 5 3
Social Trust Graph User-Item Rating Matrix
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User-Item Matrix Factorization

Oy GlU
ViV, V3o vy Vs Vg
u, 5 2 3
u, | 4 3 4
U, 2 2
u, | 5 3 @
i=1....m
U 5 5 3 j=l..n
O-R
m n IzR
p(R|U,V,0%) = (Rislo ] V), 0%)]
z:i;;l
p(Ulot) =[N (U0, 02 1) Viay) :H (V310,001
i=1 1=

R. Salakhutdinov and A. Mnih (NIPS'08) -



SoRec

+ Social Recommendation (SoRec)

v % v, v GV GU GZ
y 2 3 |
u 4 3 4
u 2 2
5 3
5 5 3
l i=1,..., m ;
J= 1,040 K2 %
g, O
SoRec
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SoRec

+ Social Recommendation (SoRec)

o o, o ] mon . I3
| p(RIUV,o%) =[] [[ N [(nj g(tsf‘"vj),ar%)}
i=14j=1
, 2 TTT - T 2\ 11k
p(C|U, Z,0%) = N | (eirlg(UT Z1), %))
i=1 k=1
\@’/ p(Ulot:) = [[N(U:l0,081) p(Viet) = [[ N (V510,08 1)
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Complexity Analysis

+ For the Objective Function o(pr! + pcl)
« For 22, the complexity is O(pri + pcl)

+ For 22  the complexity is o(pri)
+Forac , the complexity is o(pct)

+ In general, the complexity of our method
is linear with the observations in these

two matrices

25



Disadvantages of SoRec

% Lack of interpretability

<+ Does not reflect the real-world
recommendation process

')

j=1,...n k=1...m




Chapter 6

Recommend with Social Trust Ensemble



1st Motivation
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1st Motivation

JHATSFORIMERS
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1st Motivation

+ Users have their own characteristics, and they
have different tastes on different items, such
as movies, books, music, articles, food, etc.

30



2"d Motivation

Where to have

dinner? / % G\OdA

Ask % Chea Delicious

s
— >
o,
: v
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2"d Motivation

+ Users can be easily influenced by the friends
they trust, and prefer their friends'
recommendations.

Where to

have dmner/ %G\Odk

'ﬁl %@ Very Goog> : :
Aisk % Chea Delicious

32



Motivations

% Users have their own characteristics, and they
have different tastes on different items, such
as movies, books, music, articles, food, etc.

+ Users can be easily influenced by the friends
they trust, and prefer their friends’
recommendations.

< One user's final decision is the balance between

his/her own taste and his/her trusted friends'
favors.

33



User-Item Matrix Factorization

Oy GlU
ViV, V3o vy Vs Vg
u, 5 2 3
u, | 4 3 4
U, 2 2
u, | 5 3 @
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U 5 5 3 j=l..n
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p(R|U,V,0%) = (Rislo ] V), 0%)]
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R. Salakhutdinov and A. Mnih (NIPS'08) .



Recommendations by Trusted Friends
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Recommendation with Social Trust Ensemble
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Recommendation with Social Trust Ensemble
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Complexity
+ In general, the complexity of this method

1S linear with the observations the user-
Item matrix

38



Epinions Dataset

+5H1 670 users who rated 83,509 items
with totally 631,064 ratings

+ Rating Density 0.015%

+ The total number of issued trust
statements is 511,799

39
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Metrics

+ Mean Absolute Error and Root Mean
Square Error

rig — Tijl

MAE = 2

41



Comparisons

Table 3: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

Dimensionality = Dimensionality = 10

Trust | PMF | SoRec | RSTE Trust | PMF | SoRec | RSTE

Training Data | Metrics

90% MAE 0.9054 | 0.8676 | 0.8484 | 0.8377 || 0.9039 | 0.8651 | 0.8426 | 0.8367
RMSE || 1.1959 | 1.1575 | 1.1418 | 1.1109 || 1.1917 | 1.1544 | 1.1365 | 1.1094
R0% MAE 0.9221 | 0.8951 | 0.8654 | 0.8594 || 0.9215 | 0.8886 | 0.8605 | 0.8537
RMSE || 1.2140 | 1.1826 | 1.1517 | 1.1346 || 1.2132 | 1.1760 | 1.1586 | 1.1256

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)
SoRec --- H. Ma, H. Yang, M. R. Lyu and I. King (CTKM 2008)

Trust, RSTE --- H. Mq, I. King and M. R. Lyu (SIGIR 2009)

42



Performance on Different Users

% Group all the users based on the number
of observed ratings in the training data

% 6 classes: "1 - 10", "11 - 20", "21 - 40", "41
- 80", "81 - 160", "> 160",

43
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(a) Distribution of Testing Data (90% as
Training Data)
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(b) MAE Comparison on Different User (c) RMSE Comparison on Different User
Rating Scales (90% as Training Data) Rating Scales (90% as Training Data)
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Impact of Parameter Alpha

90% as Training Data 90% as Training Data
094 — 124 —
0.92} {122
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0. (
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MAE and RMSE Changes with Iterations

Dimensionality = 10 Dimensionality = 10
By 1.55 ————————
1.25¢ ——RSTEa=0 |  5ly ——RSTE=0 |
_ —B—RSTEDE=U.4_ e ——RSTE 0 =04
12 —~—RSTE 0= 0.7 1.4} ——RSTE 0= 07
1.15r ——RSTEa=1 | 144 ——RSTE 0. =1
1.1F '
<105
<1
1_ :
0.95

0.9r
0.85r

08 I 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

lterations lterations

90% as Training Data
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Conclusions of SoRec and RSTE

+ Propose two novel Social Trust-based
Recommendation methods

<+ Perform well
+ Scalable to very large datasets

% Show the promising future of social-
based techniques

a7



Further Discussion of SoRec

+ Improving Recommender Systems Using
Social Tags
o, CTU

l i=1,.., m ; k=1,..9 ; . l i=1,..., m
i=1,....n - n

o'R (o3 r O-F CTR

MovielLens Dataset
71,567 users, 10,681 movies,
10,000,054 ratings, 95,580 tags

48



Further Discussion of SoRec
<+~ MAE

Table V: MAE comparison with other approaches on MovieLens dataset
(A smaller MAE value means a better performance)

Methods 80% Training | 50% Training | 30% Training | 10% Training
User Mean (.7686 0.7710 0.7742 0.8234
Item Mean 0.7379 0.7389 0.7399 0.7484

SVD 0.6390 0.6547 0.6707 0.7448

5D PMF 0.6325 0.6542 0.6698 0.7430
SoRecUser 0.6209 0.6419 0.6607 0.7040
SoRecltem 0.6199 0.6407 0.6395 0.7026

SVD 0.6386 0.6534 0.6693 0.7431

10D PMF 0.6312 0.6530 0.6633 0.7417
SoRecUser 0.6197 0.6408 0.6595 0.7028
SoRecltem 0.6187 0.6395 0.6584 0.7016




Further Discussion of SoRec
< RMSE

Table VI: RMSE comparison with other approaches on MovieLens
dataset (A smaller RMSE value means a better performance)

Methods 80% Training | 50% Training | 30% Training | 10% Training
User Mean 0.9779 0.9816 0.9869 1.1587
[tem Mean 0.9440 0.9463 0.9505 0.9851

SVD 0.8327 0.8524 0.8743 0.9892

D PMF 0.8310 0.8582 0.8758 0.9698
SoRecUser 0.8121 0.83354 0.8604 0.9042
SoRecltem 0.8112 0.8370 0.8591 0.9033

SVD 0.8312 0.8509 0.8728 0.9878

10D PMF 0.8295 0.8569 0.8743 0.9681
SoRecUser 0.8110 0.8372 0.8593 0.9034
SoRecltem 0.8097 0.8359 0.8578 0.9019

50



Further Discussion of RSTE

+ Relationship with Neighborhood-based
methods

O

Ou

OH0

\'kgikp :
! i=1....m keT()

% The trusted friends are actually

the explicit neighbors

% We can easily apply this method

to include implicit neighbors

2+ Using PCC to calculate similar

users for every user

51



What We Cannot Model Using
SoRec and RSTE?

+ Propagation of trust

A

9@

< Distrust

@«

52



Chapter 7

Recommend with Social Distrust



Distrust

% Users' distrust relations can be
interpreted as the "dissimilar” relations

«On the web, user Ui distrusts user Ud
indicates that user Ui disagrees with most of
the opinions issued by user Ud.

o4



Distrust

1 T D 2
111&){52 Z Sa‘dHUi—UdHF

| o= — T
D _
131359(39 UV) = EZ; K(Rij — g(U'V)))?
- Ei ( SiallUi — Udl|7)
2
AU 2
+ —HUHF —HVHF-
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Trust

% Users' trust relations can be interpreted
as the "similar” relations

«0On the web, user Ui trusts user Ut indicates
that user Ui agrees with most of the opinions
issued by user Ut.

56



Trust

I T F 2
H%}Iliz Z Sit”'[)ri_{f”t F
i=1teT+(3)
min £7(R, ST, UV) = 233" IRy — g(UTV;)?
’ i=1 j=1

o m ,

+ EZ Z (Sit[|Us = Ue||7)
=1 teT+ (i)
AU -2 | AV 2
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Trust Propagation

oo
\/ =
\ @
~ ,,'x,""'/
Vors
=\
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Distrust Propagation?
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Experiments

+ Dataset - Epinions

+ 131,580 users, 755,137 items, 13,430,209
ratings

717 129 trust relations, 123,670 distrust
relations

60



Data Statistics

Table 1: Statistics of User-Item Rating Matrix of

Epinions

Statistics

User [tem

Min. Num. of Ratings

1 1

Max. Num. of Ratings

162169 | 1179

Avg. Num. of Ratings

102.07 | 17.79

Table 2: Statistics of Trust Network of Epinions

Statistics Trust per User

Be Trusted per User

Max. Num. 2070

3338

Avg. Num. 5.45

5.45

Table 3: Statistics of Distrust Network of Epinions

Statistics | Distrust per User

Be Distrusted per User

Max. Num. 1562

540)

Avg. Num. 0.94

(.94
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Experiments

RMSE
Dataset | Traning Data | Dimensionality | PMF SoRec RWD RWT
507 5D 1.228 1.199 1.186 1.177
5% 10D 1.214 1.198 1.185 1.176
Epinions 10% 5D 0.990 0.944 0.932 0.924
I > /0 T0D 0077 0011 0931 0.923
20% oD 0819 0788  0.723 0.721
v 10D 0818 0.787 723 0.720

131,580 users, 755,137 items, 13,430,209 ratings
717,129 trust relations, 123,670 distrust relations



Impact of Parameters

5% as Training Data, Dimensionality = 10 10% as Tranng Cata, Dimensicnality = 10 20% as Training Data, O mensionality = 10

o 9
2

N

RMSE

B

3

0™ 10 10 107 107 T 107 i 1 10 10" 10 1 10 107
Values ofo Walues cf Values of o

(a) 5% as Training Data (b) 10% as Training Data (c) 20% as Training Data

Figure 6: Impact of Parameter o

Alpha = 0.01 will get the best performance!
Parameter beta basically shares the same trend!
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Summary

%5 methods for Improving Recommender
= 2 traditional recommendation methods
= 3 social recommendation approaches

+» Effective and efficient

+ Very general, and can be applied to
different applications, including search-
related problems
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A Roadmap of My Work

Recommender

Systems
Bridging
Future
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Search and Recommendation
GO Ogle miChaE”EC[kSGD:UQIE Search ][ I'm Feeling Lucky ] ﬁ

News results for michael jackson

Propofol dosage reported in Michael Jackson case is low. experts say - 1 hour ago
By Kimi Yoshine If Michael Jackson died from lethal levels of the powerful anesthetic propofol,
then he must have been injected with much more of the drug ...

Los Angeles Times - 4334 related articles »

The continuing fantasy of Michael Jackson's future in Vegas -

Los Angeles Times - 164 related articles »

People:A&E channel sets reality show starring Michael Jackson's ... -
San Jose Mercury Mews - 38 related articles »

guardian.co.uk

Michael Jackson | Michael Jackson This Is It | Michael Jackson ...

The Official Michael Jackson site including info on This |s It, the Michael Jackson Movie,
Michael Jackson Music, Videos and Lyrics from hits like; ...
www.michaeljackson.com/ - Cached - Similar -

Michael Jackson - Wikipedia, the free encyclopedia

Michael Joseph Jackson (August 29, 1958 — June 25, 2009), known as the "King of Pop”, was
an American musician and one of the most commercially successful ...
en.wikipedia.org/wiki/Michael_Jackson - Cached - Similar -

Michael Jackson (1)

American superstar Michael Jackson was born in Gary, Indiana, on August 29___ Visit IMDb for
Photos, Filmography, Discussions, Bio, News, Awards, Agent, ...
www.imdb.com/name/nm0001391/ - Cached - Similar -

Image results for michael jackson - Report images

Passive Recommender System



Search and Recommendation

+ We need a more active and intelligent
search engine to understand users’
Interests

+ Recommendation technology represents
the new paradigm of search
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Search and Recommendation

chmoneYcom'
+» The Web S
Jeffrey M. O'Brien

« Is leaving the era of search FORTUNE

= Is entering one of discovery

+» What's the difference?

o= Search is what you do when you're looking
for something.

o= Discovery is when something wonderful that
you didn't know existed, or didn't know how

to ask for, finds you. Recommendation!!!
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Search and Recommendation

<+ By mining user browsing graph or clickthrough
data using the proposed methods in this thesis,
we can.
o= Build personalized web site recommendations
«= Improve the ranking
« Learn more accurate features of URLs or Queries
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