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Background

Statistical Machine Learning
Supervised Learning
Unsupervised Learning
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Background

Challenging Issues
How to unify a variety of machine learning 
techniques in an effective fashion?
How to perform active learning efficiently and 
effectively?
How to learn distance metrics from context data?
How to develop appropriate metric learning 
techniques for real-world applications?
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Contributions
Learning Unified Kernel Machines

Spectral Kernel Learning
Unified Kernel Logistic Regression
Kernel Design via Marginalized Kernel
Publications: KDD 06, WWW 06

Batch Mode Active Learning
BMAL for Text and Image Categorization
Publications: ICML 06, WWW 06 

Distance Metric Learning
Discriminative Component Analysis (DCA) and KDCA
Publication: CVPR 06

Collaborative Multimedia Retrieval
Learning Log-Based Relevance Feedback
Learning Reliable Distance Metrics
Publications: MM04, EMMA 05, TKDE 06, MMSJ 06
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Part I: Learning Unified Kernel Machines

Motivation of Our Framework
Kernel machines play an important role in the state-
of-the-art machine-learning techniques for data 
mining.
Supervised Learning

Support Vector Machines (SVM)
Kernel Logistic Regressions (KLR)
Regularized Least-Square Classifiers (RLS)

Unsupervised Learning 
Spectral Clustering, Kernel PCA, …

Active Learning
Margin-Based Active Learning with Kernel Machines, etc.

How to combine these kernel machine-learning 
techniques in a unified solution? 

Part I: UKM
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Learning Unified Kernel Machines
A Unified Framework

Kernel
Initialization

Semi-Supervised 
Kernel LearningActive Learning Model Parameters 

Estimation

Convergence 
Evaluation

Unified Kernel Machine

Standard kernels
(Linear, Poly, RBF)

Domain-Specific kernels
(Graph, Sequence, Tree)

Part I: UKM
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Semi-Supervised Kernel Learning

Goal
To learn an effective kernel (matrix) from both 
labeled and unlabeled data 

Theoretical Principles
Unsupervised Kernel Design

Learning Kernel from unlabeled data
Kernel Target Alignment

Learning Kernel from labeled data

Part I: UKM
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Semi-Supervised Kernel Learning
Overview of Kernel Machine Learning

Supervised Learning
Given l training examples (x1,y1), … (xl, yl), one can train a 
prediction function p in the RKHS by the following formula

The solution of (1) can be represented as:
Empirical loss term Regularization term

(1)

(2)

Part I: UKM
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Semi-Supervised Kernel Learning
Overview of Kernel Machine Learning

Semi-Supervised Learning
Given l training examples (x1,y1), … (xl, yl), and (n-l) unlabeled 
data examples (xl+1, xl+2,…,xn), let  f be n-dimensional real 
vector, which is learned by the following semi-supervised 
learning method:

Theorem (Zhang et al., NIPS’05): The solution of (3) is 
equivalent to the solution of (1):

(3)

Part I: UKM
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Unsupervised Kernel Design

The equivalence theorem shows that, in order to exploit the 
unlabeled data, we can consider the following supervised 
learning approach with unsupervised kernel design:

(1) Design a new kernel K’ using unlabeled data
(2) Apply the new K’ in the supervised learning formula

Spectral Kernel Design

Principle: A kernel with faster spectra decay should be 
more preferred. (Zhang et al., NIPS’05)

Part I: UKM
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Kernel Target Alignment

Kernel Alignment (Cristianini et al. 2002): The empirical 
alignment of two given kernels K1 and K2 with respect to a sample 
set is the following quantity:

where

Target Kernel
Let y=[y1,…,yl]’ be a label vector of training data, for binary 
classification, the target kernel can be defined as:

Part I: UKM
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Kernel Target Alignment

Let K the kernel matrix of all data, which can be 
represented as the following structure

Principle: A better kernel can be optimized by 
maximizing the following kernel target alignment:

Part I: UKM
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Spectral Kernel Learning

Principles
Maximizing kernel target alignment meanwhile 
keeping fast spectra decay!

Formulation of Algorithm

C is a decay factor to enforce a faster 
decay rate of spectra (C>=1)

top d eigenvectors 
of initial kernel

Part I: UKM
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Spectral Kernel Learning
Formulation of Algorithm (cont’)

Let

Part I: UKM
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Spectral Kernel Learning

Formulation of Algorithm (cont’)

This is a standard Quadratic Programming (QP) problem.

Part I: UKM
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Spectral Kernel Learning
Connections to Other Kernel Techniques

Spectral Kernel Learning (SKL)

Cluster Kernel ([1, …,1, 0, …,0], Spectral Clustering)

Truncated Kernel (top eigen components, Kernel PCA)

When setting C=1, d=n, and assuming the initial kernel K is 
constructed from graph laplacian L, our SKL method is equivalent 
to the order-constrained graph kernel (Jerry Zhu, NIPS’2005)

Part I: UKM
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Spectral Kernel Learning
Empirical Observations

On “Ionosphere” dataset, initial RBF Kernel 

(a)  C = 1 (b) C = 2

Part I: UKM
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Spectral Kernel Learning

Empirical Observations
On “Heart” dataset, initial linear kernel

(a)  C = 1 (b)  C = 2

Part I: UKM
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Spectral Kernel Learning

Empirical Observations

Kernel Spectra Cumulative Eigen Energy

d (30) << n (351)

Part I: UKM
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Unified Kernel Logistic Regression

Unified KLR Paradigm for Classification 
1) Calculate an initial kernel matrix K0
2) Learn a new kernel by the SKL algorithm

3) Train a standard KLR classifier with new K

4) Active learning to seek informative data

Part I: UKM
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Unified Kernel Logistic Regression

Remarks
It is an open issue to 
determine the 
convergence condition!
We simply repeat the 
learning procedure in a 
fixed step.
Active learning may be 
done more elegantly, 
e.g., to search a batch of 
informative examples.

Part I: UKM
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Experimental Results

Experimental Testbed and Setups
Four UCI datasets

Two objectives of experimental evaluation
How effective is our SKL algorithm in learning semi-supervised 
kernels?
How effective is our UKLR scheme compared with traditional 
classification solutions?

Part I: UKM
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Experimental Results

Semi-Supervised Kernel Learning
Compared Kernels

3 standard kernels 
Linear, Quadratic, RBF

5 semi-supervised kernels
3 SKL methods with different initial kernels
2 Order-constraint graph kernels

Standard KLR classifier for classification
Settings

Fix decay factor C (C>1)
Set dimension cut-off d = 20
20 trials for each experimental comparison

Part I: UKM
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Experimental Results
Semi-Supervised Kernel Learning

Table 2. Classification performance of different kernels using KLR classifiers on UCI datasets. 
The mean accuracies and standard errors are shown in the table. Each cell in the table has 
two rows. The upper row shows the test set accuracy with standard error; the lower row gives 
the average time used in kernel learning.

Part I: UKM
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Experimental Results
Semi-Supervised Kernel Learning (cont’)

Part I: UKM
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Experimental Results

Unified Kernel Machines
Compared Schemes

KLR (initial classifier)
KLR + Rand (initial KLR classifier with additional 
labeled examples sampled randomly)
KLR + Active (initial KLR classifier with additional 
labeled examples by active learning)
UKLR (Unified Kernel Logistic Regression)

Part I: UKM
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Experimental Results
Unified Kernel Machines

Part I: UKM

Table 3: Classification performance of different classification schemes on four UCI datasets. The mean
accuracies and standard errors are shown in the table. “KLR” represents the initial classifier with the initial train 
size; other three methods are trained with additional 10 random/active examples.

30

Summary of Part I

We presented a framework of learning unified kernel 
machines (UKM) for classification. 
A new semi-supervised kernel learning algorithm 
was proposed, which is related to an equivalent 
quadratic programming (QP) problem. 
A classification paradigm was developed by 
applying our UKM framework on the KLR model. 
Empirical evaluations are conducted on several UCI 
datasets.

Part I: UKM
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Part II: Batch Mode Active Learning 
for Text Categorization

Motivation
Text Categorization
Logistic Regression and Active Learning

Batch Mode Active Learning
Theoretical Foundation
Convex Optimization Formulation
Eigen Space Simplification 
Bound Optimization Algorithm

Experimental Results
Summary

Part II: BMAL
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Motivation

Text Categorization
Problem: assign documents to predefined topics
Significances

Core Web data mining technique
Applications: category browsing, vertical search, etc. 

Challenges 
To build efficient classifiers
To minimize human labeling effort

Part II: BMAL
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Motivation

Logistic Regression
Efficiency for Training and Prediction
Natural Probability Output
State-of-the-art performance, etc…
Linear model

where is the class label.
Simplified notation:

Part II: BMAL
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Motivation
Active Learning

Goal: to find most informative unlabeled data
Traditional Methodology

Choose one unlabeled example for labeling 
Retrain the classifier with the additional example
Limitation: only one example, large retraining cost

Batch Mode Active Learning
To find a batch of most informative unlabeled 
examples

Part II: BMAL
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Batch Mode Active Learning 

(a) Binary classification example (b) Margin-based active learning (c) Batch mode active learning

– Positive examples of class-1
– Negative examples of class-2

– Unlabeled examples
– Selected examples for labeling

Toy Example

D1

D2

Part II: BMAL
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Theoretical Foundation

Main Idea:
Based on the theoretical framework of maximization of 
Fisher information

Problem Setting
In a probabilistic classification framework, assume the classification 
model is a semi-parametric form 

For example, the logistic regression model:

Part II: BMAL
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Theoretical Foundation

The problem of batch mode active learning can be regarded as a 
problem to seek a resample distribution q(x) of the unlabeled data.
The examples with large resampling probabilities will be selected 
as the most informative ones for labeling.  
According to statistical estimation theory, active learning should 
consider a resample distribution q(x) that maximizes the 
following Fisher information

Part II: BMAL
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Theoretical Foundation
The maximization of Fisher information is equivalent to find the 
resample distribution q(x) that minimizes the ratio of two Fisher 
information matrixces:

For the logistic regression model, the Fisher information matrix can 
be expressed as:

We replace the integration in the above equation with the 
summation over the unlabeled data:

Part II: BMAL
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Convex Optimization Formulation
Rewrite the objective function as

Introduce a slack matrix                    ,then turn the original 
problem into the following optimization:

In the above, we use 

Part II: BMAL

40

Convex Optimization Formulation
By the Schur complementary theorem, i.e.,

we turn it into the following optimization :

Part II: BMAL
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Convex Optimization Formulation
The final optimization problem can be expressed 

The above problem belongs to the family of Semi-definite 
programming (SDP) and can be solved by convex 
optimization techniques.

Part II: BMAL
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Eigen Space Simplification

Directly solving the above optimization problem may 
be computationally expensive for the large-size 
slack matrix variable of M.
In order to reduce the computational complexity, we 
propose an Eigen space simplification method to 
make the solution simpler and more effective. 
We assume that M is expanded in the Eigen space 
of the Fisher information matrix Ip.

Part II: BMAL
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Eigen Space Simplification

Let   be the top s eigen vectors of the 
Fisher information matrix Ip, where λ1 ≥λ2 ≥ . . . ≥λs, 
then we assume the matrix M has the following form:

The inequality can be rewritten as:

Part II: BMAL
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Eigen Space Simplification

Using the eigen expression, we have

Since the necessary condition for

we then have the following result 

Part II: BMAL
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Eigen Space Simplification

The previous necessary condition leads to following 
constraints:

Meanwhile, the objective function of tr(M) can be 
expressed as

Part II: BMAL
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Eigen Space Simplification

By putting the above two expressions together, we transform the 
SDP problem into the following approximate optimization 
problem: 

Note that the above optimization problem belongs to convex 
optimization since f(x) = 1/x is convex when x ≥ 0.

Part II: BMAL
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Bound Optimization Algorithm

Lemma 1: Let L(q)  be the objective function, 

we have the following conclusion:

Proof in Appendix.

Part II: BMAL
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Bound Optimization Algorithm

Given the lemma 1, now instead of optimizing the original 
objective function L(q), we can optimize its upper bound using 
simple updating equations:, 

This algorithm will guarantee to converge to a local optimal. 
Since the original problem is a convex optimization problem, 
the above updating procedure will guarantee to converge to a 
global optimal.

Part II: BMAL
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Bound Optimization Algorithm

The updating step:

Some Observations
(i) The example with a large classification uncertainty
will be assigned with a large probability.

(ii) The example that is similar to many unlabeled 
examples is more likely to be selected.

Part II: BMAL
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Experimental Testbeds
3 standard text datasets

Reuters-21578 dataset (10788)
Two  web-related datasets:
WebKB (4518) and Newsgroup (10966)

Part II: BMAL
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Experimental Settings

A standard feature selection by Information Gain is conducted to
remove uninformative features, in which 500 of the most 
informative features are selected.
The F1 metric is adopted as our evaluation metric, which has 
been shown to be more reliable metric than other metrics such 
as the classification accuracy. More specifically, the F1 is defined 
as

where p and r are precision and recall.
Parameters of LogReg and SVM are determined by a standard 
cross validation method. 

Part II: BMAL
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Comparison Schemes
Two popular active learning methods:

SVM-AL: the classification uncertainty of an example x is 
determined by its distance to the decision boundary

The smaller the distance d(x;w, b) is, the more the classification 
uncertainty will be.
LogReg-AL: the logistic regression active learning algorithm that 
measures the classification uncertainty based on the entropy of 
the distribution p(y|x).

The larger the entropy of x is, the more uncertain we are about 
the class labels of x.
Our Batch Mode Active Learning algorithm with logistic regression, i.e., 
LogReg-BMAL in short. 

Part II: BMAL
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Empirical Evaluation
Experimental Results with Reuters-21578

average results over 40 executions
100 training examples and 100 active examples 

Part II: BMAL
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Empirical Evaluation
Experimental Results with Reuters-21578

Part II: BMAL
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Empirical Evaluation

Experimental Results with Web-KB Dataset

Part II: BMAL
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Empirical Evaluation

Experimental Results with Newsgroup Dataset

Part II: BMAL
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Summary of Part II
A new active learning scheme is suggested for text 
categorization to overcome the limitation of 
traditional active learning;
A batch mode active learning solution is formulated 
by convex optimization techniques;
An effective bound optimization algorithm is 
proposed to solve the batch mode active learning 
problem.
Extensive experiments are conducted for empirical 
evaluations in comparisons with state-of-the-art 
active learning approaches for text categorization

Part II: BMAL
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Collaborative Multimedia Retrieval
via Regularized Distance Metric Learning

Problem Definition
Collaborative Multimedia Retrieval (CMR)
is a Multimedia Information Retrieval (MIR) 
problem which involves human interactions, 
either with online relevance feedback 
explicitly or with historical log data of users’
relevance feedback implicitly. 

Part III: CMR

59

Motivation
Relevance Feedback

A powerful tool for multimedia information retrieval
Popular methods: SVM Based solutions

Log-based Relevance Feedback (LRF)
Combining log data for online relevance feedback
Our contribution: Soft Label SVM for LRF (MM 04, 
TKDE 06)

Learning Distance Metrics with Log Data
Our contribution: Regularized Distance Metric Learning 
for learning robust and scalable metrics (ACM MM 
Journal 06)

Part III: CMR
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Regularized Distance Metric Learning

Overview
The basic idea of this work is to learn a 
desired distance metric in the space of low-
level image features that effectively bridges 
the semantic gap.
It is learned from the log data of user 
relevance feedback based on the Min/Max 
principle, i.e., minimize/maximize the distance 
between similar/dissimilar images.

Part III: CMR
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Regularized Distance Metric Learning
Formulation

The log data are given in terms of log sessions. 
Each log session: each image was marked either  
relevant  (+1), irrelevant (-1), or unknown (0).

+N

Log Session (Q
)

Image examples in the database

1 -1 1 -1 -1 0 1 -1 -1 11

-1 1 -1 -1 -1 -1 -1 1 -1-10

Part III: CMR
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Formulation
We first exploit a metric learning algorithm for log data

This formulation tells us:
When two images are judged as relevant in the same log 
session, they could be similar to each other;
When one image is judged as relevant and another is judged as 
irrelevant in the same log session, they must be dissimilar to 
each other.

Where Q stands for number of log sessions in the log data.

Part III: CMR
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Formulation
The formulation in (4) may not be robust for noise, 
we form a new objective function for distance metric 
learning that takes into account both the 
discriminative issue and the robustness issue as:

(6)

Part III: CMR
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Formulation
Using distance expressions, both the second and the 
third items of objective function in (5) can be expanded 
into the following forms:

Part III: CMR
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Formulation
Putting Eqn. (6), (7), (8) together, we have the final 
formulation for the regularized metric learning:

Part III: CMR
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Formulation

To convert the above problem into the standard form, we 
introduce a slack variable t that upper bounds the 
Frobenius norm of matrix A, which leads to an equivalent 
form of (9), i.e.,

The first constraint is called a second order cone constraint
The second constraint is a positive semi-definite constraint.
A special form of Convex optimization problems!
There exists efficient solutions to solve it in a polynomial time

Part III: CMR
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Experimental Results

Datasets
20-Category
50-Category

Image Representation
9-dimensional Color Histogram
18-dimensional Edge Histogram
9-dimension texture
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Experimental Results

Collection of Users’ Log Data
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Experimental Results
Compared Schemes:

1) “Euclidean”: Euclidean metric without log data.
2) “IML”: based on the semantic representation 
learned from the manifold learning algorithm.
3) “DML”: based on the metric learned by a typical 
distance metric learning algorithm.
4) “RDML”: based on the metric by proposed 
regularized metric learning algorithm.

Part III: CMR
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Experimental Results
Table 2: Average precision (%) of top-ranked images on the 20-Category
testbed over 2,000 queries. The relative improvement of algorithm IML,
DML, and RDML over the baseline Euclidean is included in the parenthesis
following the average accuracy.

Table 3: Average precision (%) of top-ranked images on the 50-Category testbed
over 5,000 queries.

Part III: CMR
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Robustness Evaluation
Table 4: Average precision (%) of top-ranked images on the 20-Category
testbed for IML, DML, and RMDL using noisy log data. The relative
improvement over the baseline Euclidean is included in the parenthesis
following the average accuracy.

Table 5: Average precision (%) of top-ranked images on the 50-Category
testbed for IML, DML, and RMDL using noisy log data. 
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Efficiency and Scalability

Table 6: The training time cost (CPU seconds) of three algorithms 
on 20-Category (100 log sessions) and 50-Category (150 log 
sessions) testbeds.

Part III: CMR
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Summary of Part III
We proposed a novel algorithm for distance metric 
learning, which boosts the retrieval accuracy of 
CBIR by taking advantage of the log data of users’
relevance judgments. 
A regularization mechanism is used in the proposed 
algorithm to improve the robustness of solutions, 
when the log data is small and noisy. 
It is formulated as a positive semi-definite 
programming problem, which can be solved 
efficiently.
Experiment results have shown that the proposed 
algorithm for regularized distance metric learning 
substantially improves the retrieval accuracy of the 
baseline CBIR system.

Part III: CMR
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Summary of Other Contributions

Distance Metric Learning for Clustering
Discriminative Component Analysis (DCA)
Kernel DCA for learning nonlinear metrics
Details in Appendix A

Marginalized Kernels for Web Mining
Time-dependent similarity measure scheme
Marginalized kernels to exploit both explicit similarity 
and implicit cluster semantic for similarity measure
Details in Appendix B

75

Conclusions
We proposed a framework of statistical machine 
learning for data mining and collaborative 
multimedia retrieval.
We suggested a unified framework to learn the 
unified kernel machines, in which a new semi-
supervised kernel learning algorithm was proposed. 
We explored the batch mode active learning 
problem and proposed a novel algorithm to search a 
batch of informative examples.
We studied a real-world application, collaborative 
multimedia retrieval, and proposed a regularized 
distance metric learning algorithm for learning robust 
and scalable metrics for multimedia retrieval.
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Future Work

Theoretical Analysis on UKM …
More effective algorithms and extensions to 
UKM …
Employing UKM to solve real-world problems, 
classification, regressions, information 
retrieval, …

77

Selected Publications (Regular Papers)
1. "Learning the Unified Kernel Machines for Classification," Steven C.H. Hoi, Michael R. Lyu, Edward Y Chang, 

In  ACM SIGKDD (KDD2006), Philadelphia, USA, August 20 - 23, 2006.

2. “Large-Scale Text Categorization by Batch Mode Active Learning,” Steven C.H. Hoi, R. Jin and M.R. Lyu, In 
WWW 2006, Edinburgh, England, UK, 2006.

3. "Time-Dependent Semantic Similarity Measure of Queries Using Historical Click-Through Data", Q. Zhao, 
Steven C. H. Hoi, T.-Y. Liu, et al, In WWW 2006, May 2006.

4. "Batch Mode Active Learning and Its application to Medical Image Classification“, Steven C.H. Hoi, R. Jin, J. 
Zhu and M.R. Lyu, In ICML 2006, Pittsburgh, US, June 25-29, 2006.

5. “Learning Distance Functions with Contextual Constraints for Image Retrieval“, Steven C.H. Hoi, W. Liu, 
Michael R Lyu, W-M. Ma, in IEEE CVPR 2006, New York, June, 2006

6. "A Unified Log-based Relevance Feedback Scheme for Image Retrieval," Steven C. H. Hoi, Michael R. Lyu
and Rong Jin, In IEEE Transactions on KDE (TKDE), vol. 18, no. 4, 2006

7. "Collaborative Image Retrieval via Regularized Metric Learning“, Luo Si, Rong Jin and Steven C. H. Hoi and 
Michael R. Lyu, ACM Multimedia Systems Journal (MMSJ), Special issue on Machine Learning Approaches to 
Multimedia Information Retrieval, 2006. 

8. "A Semi-Supervised Active Learning Framework for Image Retrieval," Steven C. H. Hoi and Michael R. Lyu, in 
IEEE CVPR 2005, San Diego, CA, USA June 20-25, 2005

9. "A Unified Machine Learning Paradigm for Large-Scale Personalized Information Management,“, Edward Y. 
Chang, Steven C. H. Hoi, Xinjing Wang, Wei-Ying Ma and Michael R. Lyu, EIT 2005, NTU Taipei, August 2005.

10. "A Novel Log-based Relevance Feedback Technique in Content-based Image Retrieval," Steven C.H. Hoi and 
Michael R. Lyu, ACM Multimedia, New York, pp. 24-31, 2004 78

Thanks!

Q & A



14

79

Appendix

A: Distance Metric Learning for Clustering
B: Marginalized Kernels for Web Mining
C: Proof of Lemma 1 in BMAL
D: Definition of Semi-Definite Programming
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Appendix A:
Distance Metric Learning for Clustering

Motivation
We address important limitations of existing 
metric learning methods, Relevant 
Component Analysis (RCA)
It lacks of considering negative constraints
It cannot capture nonlinear relationship of 
data instances via linear transformation

Solution:
Discriminative Component Analysis (DCA)
Kernel DCA to learn nonlinear metrics

81

Discriminative Component Analysis

Formulation
Given a set of data points                   and a set 
of contextual constraints
Form  n chunklets using the positive 
constraints:  
Form a discriminative set         to indicate 
which chunklets can be discriminated each 
other by the negative constraints. 

1{ } jn
j ji iC x ==

jD

1{ }N
i iX x ==
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Discriminative Component Analysis

Two covariance matrixes are computed:

where , m_i is the mean of the i-th

chunklet, i.e., 
Finding the optimal transformation is equivalent to solve the 
following optimization:
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Discriminative Component Analysis

Algorithm for solving DCA
Idea: Based on the Fisher’s criterion, the DCA problem can be 
solved by diagonalizing Cb and Cw simultaneously

Steps:
1) Compute the covariance matrices  Cb and Cw by Eq.(1),(2)
2) Diagonalize Cb by eigenanalysis
3) Project and diagonalize Cw by eigenanalysis
4) Output transformation matrix A

A

| A C A|(A) argmax
| A C A|

T
b

T
w

J =
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Kernel DCA

The kernel techniques first map the input data into a 
feature space F.
The data can be then analyzed in the projected 
feature space. 
The linear transformation in the feature space 
corresponds the nonlinear analysis in the input 
space.
For example: Kernel PCA, Kernel ICA, Kernel LDA, 
etc.
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Kernel DCA

Formulation
We implicitly map the original data                 in the 
input space I to a high-dimensional feature space F
via some defined basis function. 

The similarity of two instances is measured:

In general, we want to find the optimal M:
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i iX x ==
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Kernel DCA

The transformation matrix  W can be represented as  

in which each of the column vector is a span of all the training
samples in the feature space, such that  

where  are the coefficients for the samples in the feature 
space. 
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i ij j
j
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Kernel DCA

For each given data instance x, we can compute its projection 
onto the i-th direction      in the feature space as

Hence the original distance can be turned into 

where
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We can compute the two corresponding covariance matrixes:

where

1
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j

n
T

b j i j i
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1 1
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1 2
1 1 1
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i i in n n

T
i j j l j

j j ji i i

u K K K
n n n= = =
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Kernel DCA

The optimization problem for Kernel DCA can therefore be given as 
follows

The algorithm to solve the Kernel DCA is similar to the linear DCA.  

A K A(A) arg max
A K A

T
b

T
w

J =
A
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Experimental Results
Datasets

Compared Schemes
(1) K-means-EU: the baseline method, i.e., typical k-means clustering
based on the original Euclidean distance;
(2) CK-means-EU: the constrained k-means clustering method based
on the original Euclidean distance [146];
(3) CKmeans-RCA: the constrained k-means clustering method based
on the distance metrics learned by RCA [8];
(4) CKmeans-Xing: the constrained k-means clustering method based
on the distance metrics learned by Xing et al. [153];
(5) CKmeans-DCA: the constrained k-means clustering method based
on the distance metrics learned by our DCA algorithm;
(6) CKmeans-RBF: the constrained k-means clustering method based
on the RBF kernel metrics;
(7) CKmeans-KDCA: the constrained
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Experimental Results

92

Summary

We studied the problem of learning distance 
metrics and data transformation using the 
contextual information for data clustering.
we proposed the Discriminative Component 
Analysis (DCA), which can exploit both 
positive and negative constraints in an 
efficient learning scheme.
We proposed KDCA to learn nonlinear 
metrics for data clustering.
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Appendix B: Marginalized Kernels for 
Time-Dependent Similarity Measures 

Motivation
Our Approach
Time-Dependent Concepts
Marginalized Kernels for Similarity Measure
Empirical Results

94

Motivations

Exploit the click-through data for 
semantic similarity of queries by 
incorporating temporal information
To combine explicit content similarity 
and implicit semantic similarity via 
marginalized kernel techniques

95

Our Approach

96

Time-Dependent Concepts 
Calendar schema and pattern

Example
Calendar schema <day, month, year>
Calendar pattern <15, *,*>
<15, 1, 2002> is contained in the pattern <15, *,*>
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Time-Dependent Concepts

Click-Through Subgroup

Example
Based on the schema <day, week>, and the pattern 
<1,*>, <2,*>,…,<7,*>, we can partition the data into 7 
groups, which correspond to Sun, Mon, Tue, …, Sat.

98

Similarity Measure

For efficiency and simplicity, we measure the query 
similarity in a certain time slot only based on the 
click-through data.

Vector representation of queries with respect to 
clicked documents.

wi is defined by Page Frequency (PF) and Inverted 
Query Frequency (IQF)
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Similarity Measure
Query similarity measures

Cosine function
Marginalized kernel

By introducing query clusters, one can model the 
query similarity in a more semantic way.
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Time-Dependent Similarity Measure

101

Empirical Evaluation

Dataset
Click-through log of a commercial search engine: 

June 16, 2005 to July 17,2005
Total size of 22GB
Only queries from US

Calendar schema and pattern
<hour, day, month>, <1, *, *>, <2, *, *>, …
Divide the data into 24 subgroups
Average subgroup size: 59,400,000 query-page pairs
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Empirical Examples

Kids+toy, map+route

Time-dependent daily similarityIncremented daily similarity



18

103

Empirical Examples

weather + forecast, fox + news

Time-dependent daily similarityIncremented daily similarity

104

Summary

Presented a preliminary study of the dynamic 
nature of query similarity using click-through 
data
Using marginalized kernels for building an 
time-dependent model
Conducted empirical evaluations from real-
world web search data
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Appendix C: Proof of Lemma1

Lemma 1: Let L(q)  be the objective function in (15), 
we have the following conclusion

Proof.
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Proof (cont.):
Using the convexity property of reciprocal function, namely

for x ≥ 0 and p.d.f.           .
We can arrive the following deduction
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Proof (cont.):
Substituting the above inequation back to L(q), we can attain the 
following inequality:

This finishes the proof of the inequality lemma. □ Back
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Appendix D – Semi-Definite Programming
(SDP)


