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User experience of mobile apps is an essential ingredient that can influence the user base and app revenue.
To ensure good user experience and assist app development, several prior studies resort to analysis of app
reviews, a type of repository that directly reflects user opinions about the apps. Accurately responding to
the app reviews is one of the ways to relieve user concerns and thus improve user experience. However,
the response quality of the existing method relies on the pre-extracted features from other tools, including
manually-labelled keywords and predicted review sentiment, which may hinder the generalizability and
flexibility of the method. In this paper, we propose a novel neural network approach, named CoRe, with
the contextual knowledge naturally incorporated and without involving external tools. Specifically, CoRe
integrates two types of contextual knowledge in the training corpus, including official app descriptions from
app store and responses of the retrieved semantically similar reviews, for enhancing the relevance and accuracy
of the generated review responses. Experiments on practical review data show that CoRe can outperform the
state-of-the-art method by 12.36% in terms of BLEU-4, an accuracy metric that is widely used to evaluate text
generation systems.
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1 INTRODUCTION
According to the report released by [8], there are over five billion mobile users worldwide, with
global internet penetration standing at 57%. For these app users, they could choose the apps for
usage from a vast number of mobile apps; for example, Google Play and Apple’s App Store provide
2.5 million and 1.8 million apps, respectively [9]. An essential factor for apps to be successful is
to guarantee the quality of app functionalities and ensure good user experience. User reviews,
which serve as a communication channel between users and developers, can reflect immediate user
experience, including app bugs and features to add or modify. Recent research has leveraged natural
language processing and machine learning techniques to extract useful information from user
reviews to help developers test, optimize, maintain and categorize apps (see e.g., [21, 26, 30, 33, 62])
for ensuring good user experience.
The app stores such as Google Play and App Store also allow developers to respond to the

reviews [5, 7], and encourage them to respond to reviews promptly and precisely for creating a
better user experience and improving app ratings. A recent study by Hassan et al. [34] confirmed
the positive effects of review reply. Specifically, they found that responding to a review increases
the chances of a user updating their given rating by up to six times in comparison with no response.
McIlroy et al. [51] discovered that users change their ratings 38.7% of the time following a developer
response, with a median increase of 20% in the rating. Despite of the advantage of review response,
developers of many apps never respond to the reviews [34, 51]. One major reason is the plentiful
reviews received for the mobile apps, e.g., the Facebook app on Google Play collects thousands of
reviews per day [13]. It is labor-intensive and time-consuming for developers to respond to each
piece of review. Therefore, the prior work [27] initiates automating the review response process.
Review response generation can be analogical to social dialogue generation [41, 71] in the

natural language processing field. Different from social dialogue generation, app review-response
generation is more domain-specific or even app-specific, and hence, its performance strongly relies
on the establishment of the domain knowledge. For example, the response for the review of one app
may not be applicable for the review of another app even though the reflected issues are similar.
As illustrated in Figure 1, both review instances are complaining about the Internet connection
issue, but developers’ suggested solutions are different. For the UC browser app, the developer
suggests to clear cache while for the PicsArt photo editor app, the developers undertake to simplify
the options of save and share edits.

To automatically learn the domain-specific knowledge, Gao et al. [27] proposed a Neural Machine
Translation (NMT) [64]-based neural network, named RRGen, which can encode user reviews
with an embedding layer and decode them into developers’ response through a Gated Recurrent
Unit (GRU) [19] model with attention mechanism. External review attributes including review
length, rating, predicted sentiment, app category, and pre-defined keywords, are adopted to better
encode the semantics of user reviews. Although good performance is demonstrated, the design of
RRGen exhibits two main limitations. First, the performance of the external tools such as SURF [62]
(for determining pre-defined keywords) and SentiStrength [65] (for estimating review sentiment)
may impact the results of RRGen. For example, when the keywords in the reviews are not in the
pre-defined keyword dictionary provided by SURF, RRGen would fail to capture the semantics of
the review. Second, RRGen faces a common problem of NMT-based approaches, i.e., they generally
prefer high-frequency words in the corpus and the generated responses are often generic and not
informative [14, 73, 76].
To alleviate the above limitations, we propose a novel neural architecture namely Contextual

knowledge-based app Review response generation (CoRe), built upon official app descriptions and
responses of retrieved similar reviews from the training corpus. For mitigating the first limitation,
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User name1 26/12/2016

After recent updation, my uc browser wasn't work properly 
especially uc news tool. Whenever I did refresh, it displayed
need internet connection all time. Please fix my issue.

Hi my dear so sorry for the problem. Do it happen in all
news or individual one? Can you open another sitting in uc
browser? We suggest you clear cache, turn on off cloud
boost, change the access point and retry.

Developer1 27/12/2016

(a) One review instance of the UC Browser app.

We're sad to hear that you feel this way as our social
network is getting bigger and more people are sharing
their edits with us. We will simplify the option of save and
share edits make them happen simultaneously .

Developer2 22/12/2016

User name2 21/12/2016

It was perfect I could take a photo then edit it and save it to
move it to my pc or to send it to a friend via bluetooth but
now if I'm not connecting to the internet it won't let me do
anything!

(b) One review instance of the PicsArt Photo Editor app.

Fig. 1. Review instances from two separate apps. The underlined texts highlight the main issues reported in
reviews and corresponding suggested solutions from developers.

we incorporate app descriptions, which usually contain sketches of app functionalities [11]. Based
on app descriptions, the neural model can learn to pay attention to app functionality-related words
in the reviews, without feeding pre-defined keywords into the model. For relieving the second
limitation, we involve responses of similar reviews based on Information Retrieval (IR)-based
approach. The IR-based approach [38] has proven useful in leveraging the responses of similar
conversations for producing relevant responses, so the IR-based retrieved responses are highly
probable to contain the words in the expected responses (including the low-frequency ones). To
incorporate the words in the retrieved responses, CoRe utilizes pointer-generator network [59] to
adaptively copy words from the responses instead of simply from a fixed vocabulary obtained from
the training corpus.
Experiments based on 309,246 review-response pairs from 58 popular apps show that CoRe

significantly outperforms the state-of-the-art model by 12.36% in terms of BLEU-4 score [55] (An
accuracy measure that is widely used to evaluate text generation systems). Human study with 20
programmers through Tencent Online Questionnaire [6] further confirms that CoRe can generate
a more relevant and accurate response than RRGen. We release the whole replication package
through this link1, including the dataset, experimental configurations, and source code

The remainder of this paper is organized as follows. Section 2 introduces the background of our
work. Section 3 illustrates the proposed approach. Section 4 and Section 5 detail our experimental
1https://bit.ly/3kv6WEl
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settings and the experimental results, respectively. Section 6 describes the human evaluation results.
Section 7 discusses the advantages of the proposed approach and threats to validity. Section 8
surveys the related work. Section 9 concludes the paper.

2 BACKGROUND
In this section, we introduce the background knowledge of the proposed approach, including
attentional encoder-decoder model and pointer-generator model.

2.1 Attentional Encoder-Decoder Model

Encoder Outputs

… … … …

[𝛼1 𝛼i 𝛼n]……

Contex Vector

word distribution

Source Sequence Target Sequence

Fig. 2. Graphical illustration of the attentional bi-LSTM encoder-decode model.

Encoder-decoder model, also called sequence-to-sequence model, has demonstrated the ability
to model the variable-length input and output, e.g., words and sentences. Figure 2 illustrates the
architecture of the attentional encoder-decoder model. Generally, tokens of the source sequence
w = (𝑤1,𝑤2, ...,𝑤𝑛) (𝑛 is the number of input tokens) are fed one-by-one into the encoder (a single-
layer bidirectional GRU [19] as shown in Figure 2), producing a sequence of encoder hidden states
h = (ℎ1, ℎ2, ..., ℎ𝑛). On each step 𝑡 , the decoder (a single-layer unidirectional GRU) is often trained to
predict the next word 𝑦𝑡 based on the context vector c and previously predicted words {𝑦1, ..., 𝑦𝑡−1},
and has decoder state 𝑠𝑡 . The context vector 𝑐𝑡 depends on a sequence of encoder hidden states h,
and is computed as a weighted sum of the hidden states [15]:

𝑐𝑡 =
𝑛∑
𝑗

𝛼𝑡 𝑗ℎ 𝑗 ,

𝛼𝑡 𝑗 = softmax(𝑒𝑡 𝑗 ),
(1)

where 𝑒𝑡 𝑗 measures the similarity degree between the input hidden state ℎ 𝑗 and decoder state 𝑠𝑡−1.
The attention weight 𝛼𝑡 can be viewed as a probability distribution over the source words, and
higher probabilities render the decoder pay more attention to the corresponding input during
producing the next word. The context vector is then concatenated with the decoder state 𝑠𝑡 and fed
through two linear layers to generate the vocab distribution:

𝑃vocab𝑡 (𝑤 ) = softmax(𝑣 ′(𝑣[𝑠𝑡 , 𝑐𝑡 ] + 𝑏) + 𝑏 ′), (2)
where 𝑣 , 𝑣 ′, 𝑏, and 𝑏 ′ are learnable parameters, and 𝑃vocab𝑡 is a probability distribution over all
the words in the vocabulary. The decoder state 𝑠𝑡 depends on the last decoder state 𝑠𝑡−1 and the
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previous decoder output 𝑦𝑡−1 at a decoder step 𝑡 , where 𝑠𝑡=1 is the encoder’s final hidden state
and 𝑦𝑡=1 is a special character that indicates the beginning of a sentence. The model is trained to
minimize the negative log likelihood:

loss = min
1
𝑁

∑
𝑖

− log 𝑃 (𝑦𝑖 |𝑥𝑖 ), (3)

where each (𝑥𝑖 , 𝑦𝑖 ) is a (source sequence, target sequence) pair from the training set.

2.2 Pointer-Generator Model

… …

word distribution

𝛾

× (1 − 𝛾)

× 𝛾

word distribution

overall distribution

Context Vector

Source Sequence Target Sequence

Encoder Outputs

Attention 

Distribution
𝛼1

𝛼2
𝛼3

𝛼4
𝛼5

Fig. 3. Graphical illustration of the pointer-generator model.

Pointer-generator networks [59, 68] allow sequence-to-sequence models to predict words during
decoding by either copying words via pointing or generating words from a fixed vocabulary.
Figure 3 depicts the architecture of the pointer-generator model. As can be seen, besides computing
the context vector 𝑐𝑡 and attention weight 𝛼𝑡 , the generation probability 𝛾𝑡 ∈ [0, 1] for step 𝑡 is
calculated for the context vector 𝑐𝑡 , the decoder state 𝑠𝑡 and the decoder input𝑤𝑡 :

𝛾𝑡 = 𝜎(𝜔⊺
𝑐 𝑐𝑡 + 𝜔⊺

𝑠 𝑠𝑡 + 𝜔⊺
𝑤𝑤𝑡 + 𝑏𝑝𝑡𝑟 ), (4)

where vectors 𝜔𝑐 , 𝜔𝑠 , 𝜔𝑤 and scalar 𝑏𝑝𝑡𝑟 are learnable parameters. 𝜎 is the sigmoid function. 𝛾𝑡
can be regarded as an indicator of which source the predicted word comes from. The probability
distribution over the overall vocabulary is computed as:

𝑃𝑡 (𝑤 ) = 𝛾𝑡 · 𝑃vocab𝑡 (𝑤 ) + (1 − 𝛾𝑡 ) ·
∑
𝑖:𝑤𝑖=𝑤

𝛼𝑡𝑖 . (5)

If𝑤 is an out-of-vocabulary (OOV) word, then 𝑃vocab𝑡 (𝑤 ) is zero. In this way, point-generator models
are able to generate OOV words. The loss function is the same as described in equations (3).

3 METHODOLOGY
This section describes our proposed model CoRe, which builds upon the basic pointer-generator
model. Besides user reviews, two types of contextual knowledge, including app descriptions and
responses of the retrieved similar reviews from the training corpus, are regarded as the source
sequence. The developers’ responses are treated as the target sequence. App descriptions generally
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App 
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𝑐(𝑟) 𝑐(𝑑)

Hidden State

Fig. 4. Overall architecture of CoRe.

describe apps’ functionalities [11], so with app descriptions integrated, the words related to app
functionalities are prone to be captured. Semantically-similar reviews are involved since the
semantics of the corresponding responses tend to be identical. For each piece of review, the
semantic distances with other reviews in the training set are computed as the cosine similarity
between the unigram tf-idf representations, and only the responses of the top 𝐾 reviews with
highest similarity scores are considered for the response generation.

The overall architecture of the proposed model is illustrated in Figure 4. CoRe is mainly composed
of four stages: Data preparation, data extraction, model training, and response generation. We first
preprocess the app reviews, their responses and app descriptions collected from Google Play. The
processed data are then parsed into a parallel corpus of user reviews, corresponding responses,
the retrieved responses, and app description. Based on the parallel corpus, we build and train a
pointer-generator-based model with the contextual knowledge holistically considered. The details
are elaborated in the following sub-sections..

3.1 Source Sequence Encoding
Let w = (𝑤1,𝑤2, ...,𝑤𝑛) be a sequence of source tokens, which can be the input review x, app
description d or the response for each of top K retrieved similar reviews r(𝑘), 1 ≤ 𝑘 ≤ 𝐾 . We first
obtain a trainable embedded representation of each token in the sequence and then adopt bi-GRU
to encode the sequence of the embedding vectors.

𝑒 (𝑥 ), h(𝑥 ) = bi-GRU(x), (6)

𝑒 (𝑑), h(𝑑) = bi-GRU(d), (7)

𝑒 (𝑟 )(𝑘), h(𝑟 )(𝑘) = bi-GRU(r(𝑘)), (8)
where 𝑒∆ and h∆ = (ℎ1, ℎ2, ..., ℎ𝑛) denote the final hidden state of the bi-LSTM and outputs of
bi-LSTM at all steps, where ∆ ∈ [(𝑥 ), (𝑑), (𝑟 )(1), ..., (𝑟 )(𝑘), ..., (𝑟 )(𝐾 )].

Under Review.



Automating App Review Response Generation Based on Contextual Knowledge 7

3.2 Contextual Knowledge Integration
Different from the basic pointer-generator network [59], CoRe also allows integrating tokens from
the contextual information besides the input reviews. At decoder step 𝑡 , the decoder state 𝑠𝑡 is used
to attend over the app description tokens and the retrieved response tokens to produce a probability
distribution over the tokens appearing in the description and retrieved responses respectively.
These distributions are then integrated with the attention distribution obtained by the decoder
over the fixed vocabulary to compute an overall distribution.

3.2.1 Copying tokens from app description. Similar to the basic attentional encoder-decoder model,
we encode the description tokens d and apply attention to the encoder outputs at a decoder step 𝑡 .
This produces the attention weights 𝛼 (𝑑)

𝑡 and a representation of the entire context 𝑐 (𝑑)
𝑡 . The context

vector is then employed to obtain the probability distribution 𝑃 (𝑑)
𝑡 (𝑤 ) over the tokens in the app

description:

𝛼
(𝑑)
𝑡 , 𝑐

(𝑑)
𝑡 = Attention(h(𝑑), 𝑠𝑡 ), (9)

𝑃
(𝑑)
𝑡 (𝑤 ) = 𝑔(𝑠𝑡 , 𝑦𝑡−1, 𝑐

(𝑑)
𝑡 ), (10)

where h(𝑑) indicates the encoder outputs as computed in Equation (7) and 𝑔 is a non-linear mapping
function.

...

...
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𝒘

𝒄𝒕
(𝒓)

...
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Fig. 5. Illustration of the hierarchical pointer network for copying tokens from the retrieved 𝐾 responses.

3.2.2 Copying tokens from responses of the retrieved reviews. To integrate the responses of the 𝐾
retrieved reviews, we adapt the hierarchical pointer network as shown in Figure 5 for involving
tokens from multiple extracted responses. Based on the token-level representations h(𝑟 )(𝑘), the
decoder state 𝑠𝑡 is used to attend over the tokens in each retrieved response:

𝛼
(𝑟 )(𝑘)
𝑡 , 𝑐

(𝑟 )(𝑘)
𝑡 = Attention(h(𝑟 )(𝑘), 𝑠𝑡 ), (11)

𝛼
(𝑟 )
𝑡 , 𝑐

(𝑟 )
𝑡 = Attention([𝑐 (𝑟 )(1)

𝑡 , ..., 𝑐
(𝑟 )(𝐾 )
𝑡 ], 𝑠𝑡 ), (12)
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𝑃
(𝑟 )
𝑡 (𝑤 ) = 𝑔(𝑠𝑡 , 𝑦𝑡−1, 𝑐

(𝑟 )
𝑡 ), (13)

where h(𝑟 )(𝑘) is the output of the encoder for the response of the top 𝑘-th retrieved reviews. The
context vector 𝑐 (𝑟 )

𝑡 for all the retrieved responses are obtained based on the context vectors of all
the 𝐾 responses, following the Equation (12). 𝑃 (𝑟 )

𝑡 (𝑤 ) means the probability distribution over the
tokens in the retrieved 𝐾 responses.

3.2.3 Attention fusion. We first fuse the two vocabulary distributions 𝑃 (𝑑)
𝑡 (𝑤 ) and 𝑃 (𝑟 )

𝑡 (𝑤 ) which
represent the probabilities of copying tokens from the app description and retrieved responses
respectively. We compute the fused attention vector using the decoder state 𝑠𝑡 , the overall app
description representation 𝑐 (𝑑)

𝑡 and overall retrieved response representation 𝑐 (𝑟 )
𝑡 (Equation 14). The

computed attention weight 𝛾𝑡 is adopted to combine the two copying distributions as Equation (15).

𝛾𝑡 , 𝑐
fuse
𝑡 = Attention([𝑐 (𝑑)

𝑡 , 𝑐
(𝑟 )
𝑡 ], 𝑠𝑡 ), (14)

𝑃 fuse𝑡 (𝑤 ) = 𝛾𝑡 · 𝑃 (𝑑)
𝑡 (𝑤 ) + (1 − 𝛾𝑡 ) · 𝑃 (𝑟 )

𝑡 (𝑤 ). (15)

The overall distribution 𝑃𝑡 (𝑤 ) for the training vocabulary at each decoder step 𝑡 is calculated
based on the context vector 𝑐 fuse𝑡 of the two contextual sources and decoder state 𝑠𝑡 .

𝜃𝑡 = 𝜎(𝜔⊺
𝑓
𝑐 fuse𝑡 + 𝜔⊺

𝑠 𝑠𝑡 + 𝜔⊺
𝑥 𝑥𝑡 + 𝑏ptr),

𝑃𝑡 (𝑤 ) = 𝜃𝑡 · 𝑃vocab𝑡 (𝑤 ) + (1 − 𝜃𝑡 ) · 𝑃 fuse𝑡 (𝑤 ),
(16)

where 𝜔 𝑓 , 𝜔𝑠 , 𝜔𝑥 and 𝑏ptr are learnable parameters, 𝑥𝑡 is the decoder input, and 𝑃vocab𝑡 (𝑤 ) indicates
the vocabulary distribution based on the input reviews only (referring to Equation 2).

3.3 Model Training and Validation
3.3.1 Training. We train the whole network with the negative log-likelihood loss function of

𝐽loss(Θ) = − 1
|𝑦 |

|𝑦 |∑
𝑡=1

log(𝑝𝑡 (𝑦𝑡 |𝑦 < 𝑡, x, d, {r(𝑘)}𝐾
𝑘=1)), (17)

for a training sample (x, y, d, {r(𝑖)}𝐾𝑖=1)) where Θ denotes all the learnable model parameters. The
attentional encoder-decoder model has various implementations. We adopt bidirectional Gated
Recurrent Units (GRUs) [19] which is a popular basic encoder-decoder model and performs well in
many text generation tasks [20, 72]. The hidden units of GRUs are set as 200 and word embeddings
are initiated with pre-trained 100-dimensional GloVe vectors [3]. The maximum sequence lengths
for reviews, app descriptions, and retrieved responses are all defined as 200. We save the model every
200 batches. The number of retrieved responses, the dropout rate, and the number of hidden layers
are defined as 4, 0.1, and 1, respectively. Details of parameter tuning are discussed at Section 5.3.
The whole model is trained using the minibatch Adam [40], a stochastic optimization approach
which can automatically adjust the learning rate. The batch size is set as 32. During training the
neural networks, we limit the source and target vocabulary to the top 10,000 words that most
frequently appear in the training set.

For implementation, we use PyTorch [4], an open-source deep learning framework. We train our
model in a server with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz, Tesla T4 16G. The training
lasts ∼8 hours with three epochs following the setting in [27].
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3.3.2 Validation. We evaluate on the test set after the batch during which the trained model shows
an improved performance on the validation set regarding BLEU score [55]. The evaluation results
are the highest test score and corresponding generated response. We use the same GPU as used in
training and the testing process cost around 30 minutes.

4 EXPERIMENTAL SETUP
In this section, we elaborate on the setup of our experiments, including experimental dataset, the
evaluation metric, and baseline approaches.

4.1 Experimental Dataset
We perform experiments for verifying the effectiveness of the proposed model on the recently
released review response dataset [27]. The dataset includes 309,246 review-response pairs from
58 popular apps, with 279,792, 14,727, and 14,727 pairs in the training, validation, and test sets,
respectively, following 8:1:1 random split. The statistics of the lengths of app reviews and responses
are illustrated in Table 6. The average review length is ∼15 with maximum at around 200 on the
training, validation, and test sets. The maximum word number of user reviews may be attributed
to the length limit of Google play reviews [2]. We also observe that the length distributions of the
reviews/responses are relatively consistent among the training, validation and test sets. In this
work, we set the maximum sequence length as 200 following the prior study [27] to ensure fair
comparison. We also discuss the impact of the maximum sequence lengths in Section 7.

Fig. 6. Length distribution of the reviews and responses in the benchmark dataset.

Besides the review-response pairs, we crawled the corresponding app descriptions from Google
Play for the 58 subject apps. For the app descriptions, we remove all special characters such as
“⋆” and conduct similar preprocessing steps as the review preprocessing steps [27], including
lowercase and lemmatization. After the basic preprocessing, we observe that the maximum, median
and minimum lengths of the app descriptions are 625, 300 and 43 words, respectively, with the
average length at 314. Since the semantics of long input texts are difficult to be effectively learnt
by the basic attentional encoder-decoder model [75], we reduce the input description lengths by
manually filtering out the sentences irrelevant to the app features/functionalities (e.g., the sentences
explicitly encouraging users to download the apps, “download the highest rated travel app now and
join thousands of bookers like you finding unmissable hotel deals!”). The pruning process is conducted
by the first two authors together. One author first extracts the informative description sentences
for each app. We find that although the official app descriptions vary in content and length, they
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present similar structure, i.e., introduction about the app functionality in general first and then
about specific functions and advantages, finally encouraging users to download and use the apps.
So one author extracts one or two sentences from the general introduction, keeps the sentences
that describe specific functions, and extracts one or two sentences from the conclusion words. The
other author then checks the extracted sentences, and marks the cases (4/58, 6.9%) for which he
disagrees with the first author, e.g., the other author finds that some sentences that are irrelevant
to the app functionality are included in the pruned description. For the disagreement cases, the two
authors further discuss to reach a consensus. The pruning process costs us around 1.5 hours for the
58 subject apps. The maximum, median and minimum lengths of the reduced descriptions are 198,
151 and 43 words, respectively, with the average length at 146. For the retrieved responses of CoRe
as input, only the responses in the training set are considered instead of those in the validation or
test sets.

4.2 Evaluation Metric
BLEU is a metric widely used in natural language processing and software engineering fields to
evaluate generative tasks (e.g., machine translation, dialogue generation and code commit message
generation) [35, 39, 41, 76]. It calculates the frequencies of the co-occurrence of n-grams between
the ground truth 𝑦 and the generated sequence 𝑦 to judge their similarity.

𝑝𝑛(𝑦,𝑦) =
∑
𝑗 min(ℎ( 𝑗, 𝑦), ℎ( 𝑗, 𝑦))∑

𝑗 ℎ( 𝑗, 𝑦)
, (18)

where 𝑗 indexes all possible n-grams, and ℎ( 𝑗, 𝑦) or ℎ( 𝑗, 𝑦) indicate the number of 𝑗-th n-grams
in the generated sequence 𝑦 or the ground truth 𝑦 respectively. To avoid the drawbacks of using
a precision score, namely it favours shorter generated sentences, BLEU-N introduces a brevity
penalty.

BLEU-N := 𝑏(𝑦,𝑦) exp(
𝑁∑
𝑛=1

𝛽𝑛 log𝑝𝑛(𝑦,𝑦)), (19)

where 𝑏(𝑦,𝑦) is the brevity penalty and 𝛽𝑛 is a weighting parameter. We use corpus-level BLEU-4,
i.e., 𝑁 = 4, as our evaluation metric since it is demonstrated to be more correlated with human
judgements than other evaluation metrics [46].

Rouge [44] is a set of metrics used for evaluating the quality of generated sentences. Rouge-N
mainly counts the recall rate of N-grams contained in candidate and reference sentences. When the
unigram and bigram are extracted from sentences, the corresponding evaluation metric are Rouge-1
and Rouge-2. Rouge-L is a F-measure based on the Longest Common Subsequence (LCS) between a
candidate and target sentence, where the LCS is a set of words appearing in two sentences in the
same order.

METEOR [16] creates an explicit alignment between the candidate and target responses, which
is based on exact token matching. Given the alignments, the METEOR score is the harmonic mean
of precision and recall between the generated and ground truth texts [46].

4.3 Baseline Approaches
We compare the performance of the proposed CoRe with a random selection approach, a retrieval-
basedmodel [47], the basic attentional encoder-decoder model (NMT) [15], a reinforcement learning-
based model for pull request summary generation [48], and the state-of-the-art approach for review
response generation [27], namely RRGen. We elaborate on the first and last baselines below.
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Random Selection: The approach randomly picks one response in the training set as the
response to a review in the test set.

NNGen: NNGen is chosen as one baseline since it shows better performance than the basic
NMT model [39] in producing commit messages for code changes. NNGen computes the cosine
similarity between new reviews and the reviews in the training set based on the “bags of words”
representations [50]. The nearest neighbor (NN) algorithm is adopted to retrieve the most relevant
five reviews. NNGen finally regards the response of the training review with the highest BLEU-4
score as the result.

PRSummarizer: It is a sequence-to-sequence model for generating text summarization of the
pull requests in software project. PRSummarizer adopts the pointer generator to learn to copy
words from the source sequence in order to cope with out-of-vocabulary words in software artifacts.
It also designs a special loss function to bridge the gap between the training loss function and the
evaluation metric Rouge.

RRGen: It is the state-of-the-art approach for automating review reply generation. RRGen
explicitly combines review attributes, such as review length, rating, predicted sentiment and app
category, and occurrences of specific keywords into the basic attentional encoder-decoder (NMT)
model.

5 EXPERIMENTAL RESULTS
In this section, we elaborate on the results of the evaluation of CoRe through experiments and
compare it with the state-of-the-art tool, RRGen [27], and another competing approach, NMT [15],
to assess its capability in accurately responding to user reviews. Our experiments are aimed at
answering the following research questions.

RQ1: What is the performance of CoRe in responding to user reviews?
RQ2: What is the impact of the involved contextual knowledge on the performance of CoRe?
RQ3: How accurate is CoRe under different parameter settings?

5.1 RQ1: What is the performance of CoRe in responding to user reviews?
Table 1 illustrates the comparison results with the baseline approaches. As can be seen, the proposed
CoRe shows the best performance among all the approaches. Specifically, CoRe outperforms the
baselines by 12.36%∼5.20 times in terms of the BLEU-4 metric. From the 𝑝𝑛 scores, we can observe
that the responses produced by CoRe consist of more similar n-grams comparing to the ground
truth. For example, CoRe increases the performance of the baselines by at least 15.68% with respect
to the accuracy of 4-gram prediction. For the Rouge and METEOR scores, CoRe also shows superior
performance than all the baselines.
We then use Wilcoxon signed-rank test [70] to verify whether the increase is significant, and

Cliff’d Delta (or 𝑑) to measure the effect size [10]. The significance test result (𝑝-value <0.01) and
large effect size on the metrics (|𝑑 |>0.474) of CoRe and RRGen indicate that the proposed model
can generate more accurate and relevant responses to user reviews.

5.2 RQ2: What is the impact of the involved contextual knowledge on the
performance of CoRe?

We analyze the impact of the involved contextual knowledge, including app description and the
retrieved responses, on the model performance. We perform contrastive experiments in which only
a single source of contextual information is considered in the basic attentional encoder-decoder
model. Table 2 illustrates the results.
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Table 1. Comparison results with baseline approaches. Bold figures highlight better results. 𝑝𝑛 indicates the
𝑛-gram precision computed in Equation (18). Statistically significant results are indicated with *(𝑝-value<0.01).

Model BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
Random 6.55* 27.64* 6.90* 3.55* 2.78* 24.82* 5.81* 22.86* 18.71*
NNGen 14.09* 34.48* 13.85* 9.78* 8.59* 32.49* 12.31* 25.78* 24.93*

PRSummarizer 3.75* 13.05* 4.39* 2.3* 1.48* 18.26* 6.36* 19.22* 23.39*
NMT 21.61* 40.55* 20.75* 16.78* 15.47* 36.13* 15.47* 35.80* 29.27*
RRGen 36.17* 53.24* 35.83* 31.73* 30.04* 45.81* 29.82* 45.49* 42.16*
CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

Table 2. Contrastive experiments with individual knowledge source removed, where “-Retrieval” and “-
Description” indicate the CoRe with the retrieved responses and app description respectively removed.

Model BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
-Retrieval 38.65 54.73 37.91 33.71 31.90 52.39 36.12 51.31 49.26
-Description 38.58 54.00 36.71 32.55 30.71 52.36 35.85 51.05 48.54
Only review (NMT) 21.61 40.55 20.75 16.78 15.47 36.13 15.47 35.80 29.27

The integration of both app description and the retrieved responses presents the highest im-
provements. With either type of contextual information individually combined, the model achieves
comparative performance, i.e., ∼38 and ∼54 in terms of BLEU-4 and 𝑝1 scores respectively. However,
without the contextual information included, the performance shows dramatic decline, achieving
only 21.61, 35.80, and 29.27 in terms of the BLEU-4, Rouge-L, and METEOR metrics, respectively.
This implies the importance of integrating contextual knowledge for accurate review response
generation, and each type of the considered contextual knowledge is helpful for improving the
generation accuracy. We analyze deeper into the advantage carried by the contextual knowledge in
Section 7.1.

5.3 RQ3: How accurate is CoRe under different parameter settings?
We also analyze the impact of different parameter settings on the model performance. Specifically,
we compare the accuracy of CoRe under varied parameters, including the number of retrieved
responses, the number of hidden units, the number of hidden layers, dropout rate, and the dimension
of word embeddings. Grid search [42] is a common strategy to determine the optimal values of
the hyper-parameters for a given model. Since multiple parameters of CoRe are required to be
fine-tuned and each trial consumes ∼8 hours (c.f., Section 3.3), we initialize the parameters following
the prior work [27] to save time for parameter tuning. Specifically, we first set the number of hidden
units, word embedding dimension, number of hidden layers, and dropout rate as 200, 100, 1, and
0.1, respectively. Based on these initial parameters, we first conduct grid search to find the optimal
number of retrieved responses. With the number of retrieved responses determined, we then use
grid search to detect the optimal values of the other parameters one by one.

Figure 7 and Table 3 show the influence of different parameter settings on the model performance.
We observe that the accuracy of the model varies as the parameters change.

# Retrieved Responses: As can be seen in Figure 7 (a), with the number of retrieved responses
increasing from 1 to 5, the BLEU-4 score fluctuates slightly, and when the number of retrieved
responses is set as 4, CoRe achieves the best performance. This indicates that more retrieved
responses could be helpful for generating more accurate responses. However, since the relevance
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Fig. 7. Model performance under different parameter settings.

Table 3. Impact of different dimensions of word embeddings on the performance of CoRe.

Dimension
of Word Embedding BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR

25 40.15 56.87 39.45 35.16 33.34 52.53 35.97 51.41 48.63
50 38.04 54.13 37.30 33.12 31.31 51.59 35.13 50.72 48.13
100 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
200 39.09 55.20 38.42 34.13 32.27 52.29 36.18 51.16 48.77

between the retrieved response and the review reduces as the number of retrieved responses
increases, considering too many responses may bring interference to the final output.

#HiddenUnits:As shown in Figure 7 (b), more hidden units may not be beneficial for improving
accuracy. When the number of hidden units is larger than 200, the model performance exhibits a
downward trend. Thus, we define the number of hidden units as 200 during the evaluation.
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# Hidden Layers: Figure 7 (c) depicts the variations of the model performance as the number of
hidden layers increases. We can observe that the performance of CoRe shows a dramatic decrease
when the layer number is greater than 4 in terms of the BLEU-4 score, and variations as the layer
number increases from 1 to 4 are not obvious, ranging from 39.96 to 40.34 regarding the BLEU-4
value. With more hidden layers, both model training and testing time will increase; thus, we set
the number of hidden layers as 1 during the evaluation.

Dropout Rate: As can be seen in Figure 7 (d), as the dropout rate grows, the model accuracy
presents a decline trend, which implies that large dropout rates could greatly reduce the knowledge
learnt by the previous layer, leading to poor generation performance. To reduce the information
loss during the forward and backward propagation and avoid overfitting, the dropout rate is set as
0.1.

Dimension ofWord Embedding:We compare the model performance under the four different
dimensions of word embeddings provided by GloVe [3] and the results are illustrated in Table 3. As
can be seen, CoRe achieves the poorest accuracy when the dimension of word embedding equals to
50 and the best when set as 100. The performance decreases as the embedding dimension increases
to 200, which indicates that more dimension may not be useful for enhancing the accuracy of the
response generation. In this work, we set the dimension of word embeddings as 100.

6 HUMAN EVALUATION
In this section, we conduct human evaluation to further validate the effectiveness of the proposed
CoRe. The human evaluation is conducted through online questionnaire. We invite 20 participants
totally, including 15 postgraduate students, four undergraduate students and one senior researcher,
all of whom are not co-authors and major in computer science. Among the participants, 12 of
them have industrial experience in software development for at least a year. 95% (19/20) of the
participants read the user reviews or developers’ replies before downloading or updating an app.
Besides, 75% (15/20) of them have written at least one app review. The statistics indicate that a
majority of the participants are familiar with app reviews. Moreover, for the 58 subject apps, which
are from 16 app categories according to Google Play, 95% (19/20) raters have usage experience with
apps from more than five of the categories, and 70% (14/20) have used apps from more than 12 app
categories, which implies that the participants are likely familiar with the subject apps.

Each participant is invited to read 25 user reviews and judge the quality of the responses generated
by CoRe, RRGen, and the official app developers. Each of them will be paid 10 USD upon completing
the questionnaire.

6.1 Survey Design
We randomly selected 100 review-response pairs and split them evenly into four groups, where
each group consists of 25 review-response pairs. We create an online questionnaire for each group
and ensure that each group is assessed by five different participants. In the questionnaire, each
question describes one review-response pair, comprising one piece of user review, the developers’
response, and its responses generated by RRGen and CoRe. The order of the responses are randomly
swapped for each review.
Following [27], the quality of the responses is evaluated from three aspects, including “gram-

matical fluency”, “relevance”, and “accuracy”. We explained the three aspects at the beginning of
each questionnaire: The metric “grammatical fluency” measures the degree of the readability of the
response; The metric “relevance” estimates the extent of semantic relevance between the user review
and response; And the metric “accuracy” relates to the extent of the response accurately replying
to the review. All the three aspects are scored based on 1-5 scale (1 for completely not satisfying
the rating scheme and 5 for fully satisfying the rating scheme). Besides the three aspects, each

Under Review.



Automating App Review Response Generation Based on Contextual Knowledge 15

User Review: It is the best photo editing app in google store. I've been using <app> since last year. Bu I still
didn't know about saving picture with its actual size. Always the picture is compressed to a smaller size after
editing. Is there any way to save picture with high quality? Or else please enable that feature! Thank you
<app> team for this awesome app.

Response 1: Hi <user>, thanks for your honest feedback. We do have the option to change the image quality
size and it's located in the <app> setting max image size and pick the high res. Have you find it? If no, contact
our team at <email> and they will provide a detailed step by step instruction.

Response 2: Hi <user>, thanks for the review. We'd appreciate it if you could contact us at <email> with your
issue and some great suggestions so we can improve your future experience with <app>.

Response 3: Hey <user>, thanks for your honest review! You can solve this issue by going to your device's
setting about the maximum image size and clicking on the preferring image size. If the problem still continues,
please email us at <email>.

Note: This is a photography app, and the user rating is five stars. In the sentences, the symbols <app>, <user>,
<email>, <digit> denote app name, user name, email address and one digit, respectively.

Your Preference Rank of the Three Responses:

Response 1’s Relevance ○ ○ ○ ○ ○

Response 1’s Accuracy ○ ○ ○ ○ ○

Response 1’s Fluency ○ ○ ○ ○ ○

: : : : : :

Very Dissatisfied Very Satisfied

Fig. 8. An example of questions in our questionnaires. Response 1, 2 and 3 correspond to the developer’s
response, the response produced by RRGen, and the output of CoRe, respectively. The two-dot symbols
indicate the simplified rating schemes for Response 2 and 3.

participant is asked to rank the three responses based on their overall preference. The “preference
rank” score is evaluated on 1-3 scale (1 for the most preferred and 3 for the least preferred). Figure 8
shows a sample question in our questionnaire. The participants are not aware of which response is
written by developers or which one is generated by which model. They are asked to complete the
online questionnaires separately.

6.2 Results
We finally received 500 sets of scores totally and five sets of scores for each review-response
pair from the human evaluation. Each set contains scores regarding the four metrics, including
“grammatical fluency”, “relevance”, “accuracy” and “preference rank”, for the responses of CoRe,
RRGen, and official developers. The participants spent 1.72 hours to completing the questionnaire
on average, with the median completion time of 1.40 hours. We compute the agreement rate on the
four aspects given by the participants, illustrated in Figure 9. As can be seen, 78.3%, 74.0%, 72.7% and
65.0% of the total 100 review-response pairs received at lease three identical scores regarding the
“grammatical fluency”, “relevance”, “accuracy” and “preference rank” metrics respectively. Besides,
7.3%, 6.7%, 8.3% and 10.0% of the pairs are rated with consistent scores from the five annotators in
terms of the respective metrics. This indicates that the participants achieved reasonable agreement
on the quality of the generated responses.

Table 4 and Figure 10 depict the results of human evaluation. As can be seen, the responses from
official developers received the best scores from the participants among all the three responses and
with respect to all the metrics. In terms of grammatical fluency, the average scores of the response
generated by CoRe and the developers’ response are rather close, i.e., 4.19 and 4.32 respectively.
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Fig. 9. Agreement rate among the participants in the human evaluation. The horizontal axis and vertical
axis indicate different evaluation metrics and the percentages of 3/4/5 participants giving the same scores,
respectively.

Table 4. Comparison results based on human evaluation. Average scores are computed and bold indicates
top scores. Two-tailed t-test results between CoRe and RRGen are indicated with *(𝑝-value<0.01).

Grammatical
Fluency Relevance Accuracy Preference

Rank
RRGen 3.58* 2.93* 2.89* 2.59*
CoRe 4.19 4.06 4.00 1.79

Developer 4.32 4.56 4.03 1.60

As shown in Figure 10 (a), most participants gave the responses generated by RRGen a 3-star
rating, while CoRe receives more 4/5-star ratings. This indicates that CoRe can produce more
grammatically fluent responses than RRGen. Regarding the relevance, the responses generated
by RRGen are rated much poorer than those output by CoRe. Combined with Figure 10 (b), we
can observe that the more than half (62.5%) of the participants enter ratings lower than 4 for the
responses generated by RRGen, and the number of 4/5-star ratings for the responses produced
by CoRe is 1.15 times than those for the responses of RRGen. Developers’ responses receive the
most 5-star ratings comparing to the generated responses. This implies that the responses output
by CoRe tend to be more relevant to the reviews than those generated by RRGen. In terms of
the “accuracy” metric, we find that the average scores for the responses output by CoRe and the
developer’s responses are much close, i.e., 4.00 and 4.03 respectively. As illustrated in Figure 10
(c), the responses generated by CoRe received slightly more 4/5-star ratings than the developers’
responses (391 v.s. 384), and 1.22 times than the responses generated by RRGen (176). The result
demonstrate that CoRe can produce accurate responses to the user reviews, which is also reflected
in the distributions of the “preference rank” scores, as shown in Figure 10 (d). We discover that most
participants rank the responses output by RRGen as the least preferred (69.6%) and the developers’
responses as the most favored (53.0%). Also, the responses of CoRe present similar preference score
as the developers’ responses on average, i.e., 1.79 v.s. 1.60 (as shown in Table 4). The human study
further validates the effectiveness of the proposed CoRe for review response generation.

7 DISCUSSION
In this section, we discuss the advantages and limitations of our approach, as well as threats to the
validity of our findings.
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Fig. 10. Human evaluation results. For the metrics “grammatical fluency”, “relevance” and “accuracy”, the
higher scores the better; while for the metric “preference rank”, the lower scores the better. The vertical axis
indicates the number of participants giving the scores.

7.1 Why does Our Model Work?
We have conducted a deep analysis on the advantages of combining app descriptions and retrieved
responses for review response generation in CoRe.

7.1.1 App descriptions. App descriptions generally contain keywords related to main app features,
aiming at convincing users to download the apps and facilitating user search through app stores.
By considering app descriptions, CoRe can recognize the topics/functionalities discussed by users
more accurately. For example, it can learn that the review “It lose your full charge.” is related to
the “power save mode” in the app, and generate response providing the solution “trying different
save mode”, as shown in Figure 11; while the response generated by RRGen is rather in general
purpose and not topically relevant to the review. Figure 12 visualizes the latent alignment over the
user review/app description based on the attention weights 𝛼𝑡 𝑗 from Equation (1) and 𝛼 (𝑟 )

𝑡 from
Equation (9) respectively. Each column indicates the word distribution over the user review/app
description during response generation, which implies the importance of the words in the user
review/app description when generating the target word in the response. We can observe the
obvious correlation between the word “mode” (in the app description) and “save mode” (in the
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User Review: It‘s fake app. Don’t download it, friend. It lost your full charge. It finished your full
charge in <digit> minutes.

Developer’s Response: Hi, thanks for your feedback. Our test and feedback from many users
show that this product is usually quite helpful and we do believe it can help you as well. We
recommend you try different power save modes to find the one that fits you best. If there's still
problem, you can email us at <email>, we are ready to help you any way!

CoRe: Hi, thanks for your feedback. Our test and feedback from many users show the product is
helpful generally. We do believe it can help you as well. We recommend you to try different save
modes to find the one that fits you best. If there's still problem, you can email us at <email>, we
are ready to help you any way we can!

Retrieved Response-1: Hi, we're sorry to hear you didn't like du battery saver. We're always
look to improve so if you have any suggestions, you're welcome to send them to me at <email>
and we can discuss them. Thanks!

Retrieved Response-2: Hi, thanks for downloading and support. Any questions or requests, we
will be ready to help. Look forward to <user> five-star rating and wish you a nice day!

App Description: ……With Du Battery Saver's smart preset battery power management mode,
you can solve battery problem and extend your battery life. Du Battery Saver is the simplest and
easiest way to keep your android phone work well when you need it, and protects against poor
charge, battery hog apps, and overlooks device setting that shorten your battery life .

RRGen: Hi <user>, this certainly sounds like a frustrate experience. We want to look into this
issue for you. Please send a quick note to <url> contact so we can connect.

Fig. 11. A user review with the generated response where CoRe can generate responses based on the app
description. The fonts in red are indicative of the partial topical words in corresponding texts. We only
illustrate the responses of the top two retrieved reviews here for saving space.

response), and relatively weak correlations between “charge”/“minute” (in the review) and “save
mode” (in the response). This illustrates that CoRe can build implicit relations between the topical
words in app descriptions and corresponding responses, which can help generate relevant and
accurate response given a review.

7.1.2 Retrieved responses. NMT-based approaches tend to prefer high-frequency words in the
corpus, and the generated responses are often generic and not informative [14, 73, 76]. For example,
they may fail for the responses containing low-frequency words. In our experiment, we find that
51,364/309,246 (16.61%) responses in the corpus contain low-frequency words (frequency≤100).
Since similar reviews based on IR-based methods are generally related to the same semantics, their
responses could be semantically related and the words in the expected responses (including the
low-frequency ones) are also highly probable to appear in them. For example, for the review in
Figure 13, we retrieve most similar reviews with respect the semantics (i.e., tf-idf representations in
the paper) from the training corpus. We only present the responses of the top two similar reviews
here for saving space. We can see that the low-frequency words “localize” and “rss” (which is
an abbreviation of Really Simple Syndication, a web feed that allows users to access updates of
websites in a standardized format) also appears in the retrieved response (i.e., Retrieved response-2).
The words are ignored by RRGen but correctly predicted by CoRe since they appear in the retrieved
responses and are effectively captured during attention fusion (Section 3.2). In contrast, the response
generated by RRGen is topically irrelevant to the review, supposing the review is talking about
“ads”. This exhibits that the retrieved responses in CoRe are helpful for generating the responses
with low-frequency words.
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Fig. 12. A heatmap representing the alignment between the user review (left-top)/app description (left-bottom)
and generated response by CoRe (top). The columns represent the distribution over the user review/app
description after generating each word in the response. Darker colors indicate higher attention weights and
manifest a stronger correlation between the target word and source word. Red dotted rectangles highlight
partial topical words in corresponding texts.

7.2 Automating the Combination of App Descriptions in CoRe
In CoRe, the input app descriptions require manual filtering to remove the sentences irrelevant to
the app functionalities. To render CoRe a fully end-to-end framework, we propose to automatically
extract keywords from app descriptions for replacing the manual filtering process. Specifically, we
adopt the RAKE algorithm [58] for automatic keywords extraction, with detailed steps shown in
Algorithm 1. RAKE first collects a set of candidate keywords at phrase delimiters and stop word
position, and builds a graph of word co-occurrence for the candidate keywords (Lines 2 to 3). RAKE
ranks the candidate keywords based on the degree and frequency of the vertices in the graph (Lines 4
to 9). An example of the process is shown in Figure 14.We then replace the app description sentences
𝑑 with the corresponding extracted keywords as the input of CoRe during experimentation and
denote the new approach as CoRerake. The results are shown in Table 5. As can be found, with
only the keywords extracted from descriptions considered, CoRerake already outperforms RRGen
in terms of all evaluation metrics. Although the results of CoRerake are lower than those of CoRe,
they are rather close with respect to the Rouge-1 and METEOR scores. The results indicate the
effectiveness of the keywords that are automatically extracted from app descriptions for the review

Under Review.



20 Gao. et al.

User Review: Please add Hindi language. .

Developer’s Response: Thanks for your feedback. We are working to localize for more
region. In the meantime, Please use search or add rss url to connect to your prefer content. If
you have any more questions, please contact us within the <app> or email <email>.

CoRe: Thanks for your feedback. We are working to localize for more regions. In the 
meantime, please use search or add rss url to connect to your prefer content. If you have any 
other questions or comments, please email <email>, thanks!

Retrieved Response-1: Hi <user>! We don't offer the <app> in Hindi at this time. Very sorry! 

Retrieved Response-2: We are working to localize content guide for more regions. In the 
meantime, please use search or add rss url to connect to your prefer content. Thanks for 
feedback. 

RRGen: Thanks for your feedback. Sorry to hear that you are unhappy with the ads . We
would like to hear more about this issue. Please contact us within the <app> or email
<email> and our team will be happy to address this issue and hopefully resolve it for you.

App Description: Discover quality content for all your interest from personalize news,
entertainment, tech and sport article to trend lifestyle magazine. ……Our editor blends expert
voice and curated source, and even recommends story they know you'll like , so you can sit
back and flip through what matter most to you. You can even customize your personalize
newsstand pick your passion and create a smart magazine for each topic fee.

Fig. 13. A user review with the generated response where CoRe can generate responses with low-frequency
words. The fonts in red are indicative of the low-frequency words (frequency≤100) and the double-underlined
words mean they are topically irrelevant to the user review. Responses of the retrieved top two reviews and
the app description are also illustrated.

response generation task, and we will further enhance the keyword extraction component in the
future.

Algorithm 1: RAKE Algorithm.
Data: App description 𝑑 .
Result: Extracted keywords.

1 Split 𝑑 into an array of words 𝑎𝑟𝑟 (𝑑);
2 Split 𝑑 into a set of candidate keywords at phrase delimiters and stop

word position, denoted as Λ = (𝜆1, 𝜆2, ...);
3 Build a graph of word co-occurrence for the candidate keyword set Λ;
4 for𝑤 in 𝑎𝑟𝑟 (𝑑) do
5 Compute the frequency 𝑓 𝑟𝑒𝑞(𝑤 ) and degree 𝑑𝑒𝑔(𝑤 ), where

𝑓 𝑟𝑒𝑞(𝑤 ) is the number of candidate keywords containing𝑤 and
𝑑𝑒𝑔(𝑤 ) is the total number of words in the candidate keywords
containing𝑤 ;

6 end
7 for 𝜆 in Λ do
8 Compute the ranking score 𝑠𝜆 = ∑

𝑤∈𝜆
𝑑𝑒𝑔(𝑤)
𝑓 𝑟𝑒𝑞(𝑤) ;

9 end
10 Return the first third of the ranked keyword candidates.
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Table 5. Results of CoRe with the keywords automatically extracted from app descriptions. “CoRerake”
indicates CoRe with the keywords extracted from app descriptions as input, and “CoRerake-Retrieval” means
CoRerake without the retrieved responses considered, i.e., only considering the extracted keywords.

Model BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
RRGen 36.17 53.24 35.83 31.73 30.04 45.81 29.82 45.49 42.16

CoRerake-Retrieval 37.31 53.17 36.43 32.33 30.55 50.97 34.80 50.17 47.21
CoRerake 39.80 56.23 38.99 34.76 32.91 53.23 36.36 51.86 49.12
CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

make high-quality crystal clear phone
call, 1 billion user worldwide, make
free international call, make crystal
clear audio, send text message, call
app, completely free, wifi connection,
data plan, group chat, call, free, viber,
text, message, chat, start, simple, …

Viber is the free, simple, fast and most secure message and
call app. The messenger of choice for over 1 billion user
worldwide! Text now for free and make high-quality crystal
clear phone call. Viber is completely free. All you need is a
data plan or WiFi connection and you’re good to go. Make
free international call, send text message, open a group chat,
and so much more!...

Original App Description Extracted Keywords

Fig. 14. Example of the extracted keywords for the Viber app using RAKE [58].

7.3 Analysis of Different Retrieval Approaches
During retrieval of semantically-similar reviews, we adopt the unigram tf-idf based similarity
assessment method, since it has been proven effective for other text retrieval tasks [47, 74]. However,
the tf-idf representations are based on word frequencies, which may not well capture the semantics
of low-frequency words. Thus, we also explore more advanced similarity measurement approaches,
namely word embeddings [52] and BERT [22]. Specifically, for the word embedding-based approach,
we compute the average 50-dimensional GloVe vectors [3] of the words in each review as the review
representation; while for the BERT-based approach, we first use the pre-trained BERT to obtain
768-dimensional vectors of the reviews and then reduce the dimension to 50 by using the PCA
(principle component analysis) method [66]. We define the dimension as 50 to save the time needed
for computing millions of cosine similarities between the review representations. For each approach,
we take responses of the top 4 similar reviews as the input of CoRe. The results are shown in Table 6.
We observe that for all similarity measurement approaches, CoRe outperforms the state-of-the-art
baseline, RRGen. BERT-based approach shows better performance than the GloVe-based approach
with respect to all the evaluation metrics, and even better than the tf-idf based approach considering
the Rouge and METEOR scores. This indicates that the similarity assessment method can impact
the model performance, and BERT-based method has an edge over the GloVe-based method. We
will explore how to better retrieve similar reviews for more accurate response generation in the
future work.

7.4 Analysis of the Retrieved Responses
Due to the limited apps considered, the retrieved reviews may be irrelevant to the input reviews,
in which case the incorporated responses of CoRe could introduce bias into the corresponding
generated results. We analyze the similarity scores between the retrieved most similar reviews
and the given reviews, as shown in Table 7. Typically, values of cosine similarity greater than 0.5
mean that the examined vector representations have strong semantic relevancy [56]. According to
Table 7, more than 60% of the reviews possess similarity scores larger than 0.5 with the most similar
retrieved reviews, and only a small percentage of the reviews have similarity scores less than 0.1
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Table 6. Results of CoRe with different similarity measurement approaches involved during retrieving
similar reviews. “CoReGloVe” and “CoReBERT” indicate the CoRe with GloVe-based and BERT-based similarity
measurement approaches, respectively.

Model BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
RRGen 36.17 53.24 35.83 31.73 30.04 45.81 29.82 45.49 42.16

CoReGloVe 39.42 55.46 38.55 34.46 32.76 53.15 36.86 52.07 49.34
CoReBERT 39.60 55.46 38.89 34.72 32.86 53.63 37.52 52.69 50.09
CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

on the training, validation and test sets, respectively. We then conduct performance analysis on
the CoRe considering various similarity scores between the input reviews and retrieved reviews.
Specifically, we exclude the retrieved responses from the input of CoRe if the largest similarity
scores are lower than specific thresholds, i.e., only the app description is considered for response
generation. The results are shown in Table 8. We can observe that removing highly-irrelevant
responses, e.g., with similarity values less than 0.2, results in better performance than removing
more relevant responses, e.g., with similarity scores less than 0.9. The results demonstrate that
incorporating relevant responses can benefit the model performance. However, excluding the
responses with similarity scores less than 0.1, does not boost performance. And still, involving the
responses without considering the similarity values achieves the best performance, which indicates
that the retrieved responses are helpful for the task despite the low relevancy. The phenomenon
may be because the retrieved responses could provide other hints such as the patterns or sentiment
of the generated responses besides topics/semantics of the given reviews.

Table 7. Percentage analysis for the reviews of which the similarity scores with the corresponding most
similar reviews in the training dataset are below a similarity threshold.

Dataset Similarity Threshold
<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9

Training 2.02% 2.43% 6.83% 22.70% 39.10% 50.05% 57.30% 62.95% 67.52%
Validation 1.88% 1.90% 4.50% 19.30% 35.80% 47.44% 59.98% 65.43% 70.06%

Test 2.12% 2.16% 4.85% 18.90% 35.60% 47.35% 59.95% 65.36% 69.59%

Table 8. Results of CoRe with the retrieved responses excluded when their largest similarity scores are below
a threshold. The threshold “0.0” corresponds to CoRe with no retrieved responses removed.

Threshold BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
0.0 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
0.1 40.50 57.69 40.57 36.33 34.60 53.05 36.67 51.68 49.24
0.2 40.50 57.70 40.57 36.33 34.60 53.05 36.68 51.68 49.24
0.3 40.43 57.67 40.56 36.32 34.60 52.97 36.62 51.62 49.15
0.4 40.14 57.42 40.39 36.19 34.47 52.49 36.30 51.18 48.65
0.5 39.79 56.82 39.89 35.75 34.04 51.89 35.89 50.66 48.19
0.6 39.60 56.41 39.55 35.45 33.74 51.53 35.67 50.38 47.94
0.7 39.47 56.14 39.30 35.22 33.51 51.32 35.51 50.21 47.78
0.8 39.45 55.98 39.16 35.08 33.36 51.22 35.44 50.13 47.73
0.9 39.38 55.85 39.03 34.95 33.22 51.13 35.36 50.05 47.66
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7.5 Dataset Partition
In this paper, we split dataset into training, validation and test sets by following the prior study on
review response generation [27], i.e., splitting the dataset by review instead of by app. The dataset
partition strategy might cause information leakage from the training set apps into the validation or
test sets. Thus, we also evaluate the performance of CoRe based on the dataset split by app instead
of by review. Specifically, we randomly select 80%, 10%, and 10% of the studied apps as training
set, validation set, and test set, respectively. To ensure the reliability of the results, the random
selection process is conducted three times, and the average is computed. We also compare CoRe
with the best retrieval-based approach NNGen and the best generation-based approach RRGen.
The comparison results are shown in Table 9. We find that CoRe outperforms both baseline models
and the performance of all the models decreases significantly comparing to the performance when
splitting dataset by review. A reduced performance is reasonable since less knowledge of the apps
in the test set will be learned during training. The phenomenon indicates that generating responses
for the reviews of unknown apps is more challenging, and we will try to tackle the challenge in
future work.

Table 9. Comparison results of different approaches based on the dataset split by app.

Model BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
NNGen 3.07 31.57 6.76 1.78 0.52 28.33 6.11 19.80 18.32
RRGen 3.46 24.58 5.12 1.45 0.79 27.59 5.98 26.91 22.52
CoRe 7.14 30.06 9.39 4.84 2.80 29.58 9.94 27.53 24.51

7.6 Study on the Impact of Trivial Responses
Trivial responses such as “Thank you” are not informative for users, and it makes little sense to
learn from or produce such responses through machine learning methods. Similar to [47], we
manually derive some common patterns of trivial responses by skimming the responses in the
benchmark dataset. Table 10 presents our trivial response patterns. The proportions of the identified
trivial responses are 7614 (2.72%), 415 (2.82%), and 398 (2.70%) in the training, validation and test
sets, respectively. After removing the trivial responses, the performance of CoRe and the baseline
approaches are shown in Table 11. We choose the best retrieval-based model, NNGen, and the best
generation model, RRGen, as the baselines. We can find that removing the trivial responses slightly
reduces CoRe’s performance but increases the results of NNGen and RRGen in terms of the Rouge
and METEOR metrics. With respect to the BLEU-4 scores, although the performance of RRGen
and CoRe decreases, the decreasing degree is marginal. The phenomenon may be attributed to the
small percentage of the trivial responses in the benchmark dataset. Still among all the models, CoRe
achieves the best results considering all evaluation metrics, which further indicates the effectiveness
of the proposed approach.

7.7 Analysis of Using BERT as Word Representations
In the work, we initiate the word embeddings with pre-trained GloVe vectors [3] in CoRe, which
may not be the optimal choice. We further analyze the model performance when using more
advanced pre-trianed model BERT [22]. We first adopt the original pre-trained BERT model [1] to
obtain a 768-dimensional vector for each word in the vocabulary, and then utilize PCA to reduce the
dimension to 25, 50, 100, and 200 for fair comparison with the GloVe vectors. The results are shown
in Table 12. We can find that CoRe achieves different performance with different dimensions, and
shows relatively more promising results when the dimension is set to 50 or 100. Comparing with
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Table 10. Our trivial response patterns, where “[]” means optional, “/” refers to “or”, “<user>” indicates the
user name, and “<app>” is the app name.

you are [always] welcome [<user>]
why? [what is wrong?]
we’ll fix this [<user>]
thank so much for your review [<user>]
thank you [<user>]
hello [<user>], any problem?
we be glad you be enjoy the <app>
thank [<user>/you] for [your] review/suggestion/comment/feedback

Table 11. Results on the dataset with the trivial responses removed. The value inside each bracket indicates
the change compared to using the whole responses.

Threshold BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR

NNGen 14.91
(↑ 0.82)

36.02
(↑ 1.54)

14.71
(↑ 0.86)

10.41
(↑ 0.63)

9.19
(↑ 0.60)

34.38
(↑ 1.89)

13.17
(↑ 0.86)

27.00
(↑ 1.22)

25.99
(↑ 1.06)

RRGen 35.99
(↓ 0.18)

53.84
(↑ 0.60)

35.73
(↓ 0.10)

31.56
(↓ 0.17)

29.88
(↓ 0.16)

48.41
(↑ 2.60)

30.96
(↑ 1.14)

47.54
(↑ 2.05)

43.41
(↑ 1.25)

CoRe 40.32
(↓ 0.32)

56.25
(↓ 1.53)

39.50
(↓ 1.20)

35.41
(↓ 1.06)

33.60
(↓ 1.15)

53.39
(↓ 0.16)

36.88
(↓ 0.22)

52.12
(↓ 0.16)

49.37
(↑ 0.03)

the word embedding-based word representations, BERT-based approach (100-dimension) achieves
slightly better results in terms of the Rouge and METEOR metrics, but performs worse in terms
of the BLEU-4 score. Thus, we suppose that BERT-based word representations are also helpful
for accurate review response generation, but its advantage is not large as compared to the word
embedding-based representations.

Table 12. Results of using BERT to initialize the word embeddings.

Dimension BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
25 39.01 55.35 38.23 34.02 32.17 52.46 35.87 51.21 48.65
50 39.93 56.24 39.15 34.88 33.09 53.00 36.38 51.85 48.63
100 39.23 55.19 38.54 34.30 32.48 53.48 37.34 52.41 49.75
200 39.68 55.55 38.91 34.77 33.00 53.35 37.22 52.31 49.47

7.8 Analysis of the Vocabulary Size
In this work, we directly follow the defined vocabulary size in [27] for fair comparison, but the
parameter could also impact the model performance [45]. So we analyze the model performance
when the considered vocabulary size ranges from 2,000 to 14,000 for the task. As shown in Table 13,
we can observe that CoRe could achieve better performance in terms of the BLEU-4, Rouge and
METEOR metrics, with a relatively small vocabulary size such as 4,000 or 6,000. This may be
because the top 4,000 words already cover a significant proportion (∼99.17%) in terms of the word
frequencies, in spite of only accounting for a small percentage of the whole vocabulary size (6.49%).
With only the top 2,000 words involved, CoRe performs much worse than CoRe involving more
top words, which indicates the importance of considering vocabulary of sufficient size for the task.
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Table 13. Influence of the vocabulary size on the model performance.

Vocab Size BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
2000 39.33 55.71 38.55 34.31 32.47 52.64 36.11 51.43 48.60
4000 41.06 57.17 40.33 36.06 34.19 53.93 37.73 52.96 49.91
6000 40.83 56.82 40.10 35.92 33.98 54.21 37.84 53.33 50.38
8000 40.61 57.11 39.99 35.65 33.73 53.28 36.80 52.34 49.18
10000 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
12000 40.26 56.42 39.50 35.28 33.42 53.63 37.33 52.41 49.80
14000 40.34 56.16 39.58 35.44 33.60 53.95 37.74 52.90 50.34

7.9 Analysis of the Incorporation of Different Input Sources
CoRe can automatically learn the degree of the three input sources, i.e., user reviews, app de-
scriptions, and retrieved responses, are considered. According to Equation (15), CoRe captures
the incorporation weights of the vocabulary distributions from app descriptions 𝑑 and retrieved
responses 𝑟 through the parameter 𝛾𝑡 at a decoder step 𝑡 . CoRe also obtains the combined degrees
of the user reviews via the parameter 𝜃𝑡 in Equation (16). We use an example, as shown in Figure 15,
to elaborate the capacity of CoRe in adaptively combining the three input sources. We can observe
that some words in the response output by CoRe are from the app description and some from the
retrieved responses, with the words highlighted in Figure 15 (a). We then normalize and visualize
the attention distribution weights for the review, app description, and retrieved responses, as
illustrated in Figure 15 (b). We can find that the three input sources contribute to the generation
of the response words in varied degrees. For example, the app description plays the greatest role
in generating the words “local” and “international”; while the retrieved responses help most to
produce the words “homescreen” and “arrow”. The example indicates that CoRe can integrate the
three input sources with differing weights during the generation of responses.

7.10 Analysis of the Human Evaluation Results
The human evaluation results show that the responses generated by CoRe are more preferred by the
participants than the developers’ responses. We find that the responses produced by CoRe receive
better ratings from the participants than developers’ responses for 34, 34, 35, and 35 of the studied
reviews in terms of the average “grammatical fluency”, “relevance”, “accuracy” and “preference rank”
metric values, respectively. The first and second authors then perform an elaborative analysis of
the cases and discover that CoRe’s responses describe more details or more concrete topics than
the corresponding developers’ responses. Figure 16 depicts two examples. In the first example, we
can find that CoRe’s response is clearly related to the user-concerned topic “watermark”, while
the developer’s response does not address the user issue concretely and seems like a bot message.
For the second example, CoRe’s response provides an explanation about how the user can provide
more detailed information, i.e., by providing a “screenshot”, while the developer’s response simply
asks the user to forward more details without any further suggestion. The finding also inspires us
to generate responses containing more detailed descriptions in the future work.

7.11 Analysis of the Defined Maximum Sequence Length
In this work, we define the maximum sequence length for reviews and responses as 200 following
the prior work [27]. However, the maximum sequence length setting could impact the performance
of the basic NMT model [15]. Generally, the maximum sequence lengths for both source and target
sequences are set between 50 to 100 [15, 39, 60]. To analyze the influence of different sequence
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User Review: Sleazy news and naked celebrity aggregate when star magazine just doesn't show
enough skin.

Developer’s Response: sorry to hear you're dissatisfied with our content. As a news aggregator
our news providers are local and international and treat topic in various ways and have their
own views. You can dislike this content category by that small three dot icon under article title
on news fee list and this kind of content won't appear anymore .

CoRe: Hi <user> thank for your review and support! Our news providers are local and
international and treat topic in various way. You can also block provider you don't like from the
homescreen using the small arrow to the right of the title. Thank for your feedback, hope this is
helpful.

Retrieved Response-1: Hi <user> sorry you didn't like the homescreen. To only get news you
be interest in you can add or remove topic you like to the my topic screen. You can also block
provider you don't like from the homescreen using the small arrow to the right of the title.
thank for your feedback hope this be helpful news republic.

Retrieved Response-2: Hi there thanks for your review and support! We'd like to invite you to
join our exclusive user community to get early access to new feature and give us feedback.

App Description: News republic a news app power by artificial intelligence, deliver daily break
news, world local news, and article directly to you! Receive international and local news for free!
News republic provides the latest news and complete article from 500 authorize local and
international source. easy to customize to give you access to the article of the most famous
source!......

(a) A user review and the generated response by CoRe. The corresponding top two retrieved responses and
app description are also illustrated. The words highlighted in red indicate partial words appearing in both
app description/retrieved responses and the review.
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(b) The normalized attention distribution weights among the three input sources based on the learnt 𝛾𝑡 in
Equ. (15) and 𝜃𝑡 in Equ. (16).

Fig. 15. An example for illustrating the capability of CoRe in incorporating the three input sources differently.

lengths on model performance, we set the maximum sequence length at 100 tokens for the target
responses since 100 is the largest preferred maximum length used by NMT in natural language
translation [39] and all the responses in the dataset have fewer than 100 tokens. For the review
sequences, we choose two settings, one is 200 and another is 100. We pick these two settings because
100% and 98.9% reviews in the dataset are with fewer than 200 and 100 tokens, respectively. The
results are illustrated in Table 14. We can find that the maximum sequence lengths can impact the
model performance. For example, with the maximum sequence lengths set at 100 for both reviews
and responses, the BLEU-4 score shows a slight increase compared to setting both parameters as 200.
Since many configurations of the parameter are possible, optimizing the maximum review/response
lengths for generating responses is an area of future work.
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User Review: It used to be great but now they have this annoying watermark! The best part of
this <app> is that there is no watermark! Now you have to download a whole other <app> and
open it to get rid of it but only for a limited time! At least you can remove it for a while which is
why it isn’t one star yet.

Developer’s Response: Hello, if you enjoy using <app>, would you mind giving us <digit> star
rating? It will encourage us to make the <app> better, thank you for supporting! <app> holds two
online contest. Welcome to show yourself with creative idea! Top winner of each contest will
earn cash prize.

CoRe: Hello, you can remove the watermark for free just by downloading sponsor’s <app> or you
can buy our pro version. Our team is supported by advertisement. Hope you understand, thank
you!

(a) The first example.

User Review: It has a little problem with mi note <digit> handset.

Developer’s Response: We want you to know that we are working hard to improve <app> for
you. Please forward us more details about your issue to <email>. The more you describe, the
better the support we will give to you. Hope to hear from you soon! Thank you very much!

CoRe: Hi, sorry for the inconvenience. Could you please describe your problem more specifically
such as a screenshot and send them to <email>? That will help us to locate your issue better.
Thanks very much!

(b) The second example.

Fig. 16. Two examples about the responses generated by CoRe are rated higher than the developers’ responses
during the human evaluation.

Table 14. Influence of the maximum sequence length settings on the model performance.

Review Seq.
Length

Response
Seq. Length BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR

100 100 40.73 56.59 39.86 35.83 34.06 53.26 37.18 51.91 49.28
200 100 39.75 55.98 38.95 34.77 32.93 53.09 36.56 51.75 49.26
200 200 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34

7.12 Analysis on the Impact of Contextual Information on the Generated Responses
According to Table 2, CoRe with only the app description achieves similar performance as CoRe
with only the retrieved responses. To investigate further the difference between the responses
produced by the two approaches, the first two authors manually check the generated responses by
the two approaches. We find that CoRe with only the app description tends to integrate simple
reference of the app functionalities in the generated responses; while CoRe with only the retrieved
responses could generate responses with similar patterns as the retrieved ones. An example is
illustrated in Figure 17. We can observe that by combining the app description, the generated
response contains sentences related to the app functionalites, e.g., “clean cache, clean junk file, ...”.
When integrating the retrieved responses, CoRe would learn to capture the topics/pattern from the
retrieved responses, e.g., “We notice that you ... We’d like to know if you encounter any issue when
use or the reason you dislike it” in the Retrieved Response-1, for the response generation. Although
the two generated responses are generally similar in semantics, they are slightly different in the
descriptions.
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User Review:Waste time in my life.

Developer’s Response: Hi. Thanks for using our app. We notice that you may have encountered
some issues which make you do not like <app>. Would you mind telling us the details? And the
reason why you dislike? Feel free to contact us via e-mail <email> many thanks!

CoRe with Only Retrieval: Hi. Thanks for using our apps. We notice that you may have
encountered some issues which make you do not like <app>. Would you mind telling us the
details? <user> the reason why you dislike? Feel free to contact us via e-mail <email> many
thanks!

Retrieved Response-1: Hi. We notice that you rate us <digit> star without any complaint about
our app. We'd like to know if you encounter any issue when use or the reason you dislike it. We
would love to obtain feedback from you. Please send us e-mail <email> your advice will be
greatly appreciated.

Retrieved Response-2: Hi there. We are sorry for the inconvenience. This issue has our full
attention. Could you please send us some screenshots and detail your step which feature be use
before this happen phone model version <digit> <app> version. Please contact us via feedback at
the top right of <digit> <app> or email <email>

App Description: Clean master, one of the best optimization tool with space cleaner and
antivirus for android device … Clean master key function junk cleaner junk file, free antivirus,
wifi security, boost mobile, battery saver, …

CoRe with Only Description: Hi <app> is a free phone cleaner which commits to protection,
clean cache, clean junk file, save battery and speed up your <app> phone. We notice that you may
have encountered some issue which make you do not like <app>. Would you mind tell us the
reason why you dislike via <email> many thanks.

Fig. 17. One example for illustrating the difference between the responses generated by the CoRe without the
retrieved responses and the CoRe without the app description. The red fonts indicate the words describing
the app functionalites.

7.13 Developer Survey
To obtain developers’ opinions about the generated responses by CoRe, we tried to get in touch
with the developers of the studied apps through the official emails collected from Google Play.
Since some of the 58 subject apps could not be accessed in Google Play, we only collected the
developers’ emails for 43 apps. We then sent emails to these app developers, in which we provided
two examples of the generated responses of the corresponding apps and asked their opinions about
the quality of the generated responses. Unfortunately, no feedback was received within two weeks.
So we contacted 12 industry practitioners from the engineering department in several IT companies
such as ByteDance and Pinduoduo, and asked their help to assess the quality of the generated
responses.
Specifically, we design a short survey which contains two questions that ask them about their

background, six questions about the quality of the generated responses, and one question about
their willingness of adopting our tool in practical development. The 12 participants include 6
developers, 5 algorithm engineers, and 1 test engineer. Around 83.3% (10/12) have more than one
year of software engineering experience. For each question about rating the quality of the generated
response, we provide a randomly-selected review and the corresponding response produced by
CoRe, and ask the participants to rate the quality on a 1-5 Likert scale [43] (5 for excellent, 4 for
good, 3 for undecided, 2 for marginal, and 1 for poor). We only ask six questions about the quality
of the generated responses for the purpose of saving the participants’ time. The collected results
show that 83.3%∼91.7% of the participants rate each of the six generated responses as good or
excellent. For the last question, the willingness to adopt our tool is also scored on 1-5 Likert scale
(5 for strong agreement, 4 for agreement, 3 for undecided, 2 for disagreement, and 1 for strong
disagreement). We find that 83.3% of the participants express that they strongly agree or agree
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to use CoRe in practical development. The results demonstrate that the quality of the responses
generated by CoRe is acceptable and potentially beneficial for developers in practice.

7.14 Analysis of Incorporating the Retrieved Reviews
The design of CoRe considers the retrieved responses during the response generation. However, the
retrieved similar reviewsmay also be useful since they could provide hints about the described topics.
We then conduct experiments by considering user reviews as additional contextual knowledge.
The results are illustrated in Table 15. As can be seen, with the similar reviews incorporated,
CoRe’s performance does not improve substantially, and becomes worse in terms of the BLEU-4
and Rouge metrics. CoRe with only app description and CoRe with only the retrieved responses
also demonstrate the same trends, i.e., integrating the similar reviews does not benefit the model
performance. Although combining NMT with the similar reviews enhances the results of NMT in
terms of the Rouge and METEOR scores, the BLEU-4 score is not improved. The unimproved results
may be attributed to the fact that the retrieved similar reviews may involve unrelated topics, which
could introduce noise. As shown in Figure 18, the retrieved reviews are obviously irrelevant to the
given review, so the generated response with the incorporated review does not correctly answer
the given review. Since the relevancy between the retrieved reviews and given reviews could affect
the model performance, we will investigate how to retrieve and employ relevant reviews for more
accurate response generation in the future work.

Table 15. Results of CoRe with retrieved reviews incorporated.

Model BLEU-4 𝑝1 𝑝2 𝑝3 𝑝4 Rouge-1 Rouge-2 Rouge-L METEOR
NMT 21.61 40.55 20.75 16.78 15.47 36.13 15.47 35.80 29.27

NMT+Reviews 21.12 39.82 20.31 16.37 15.02 39.59 20.53 37.97 34.50
CoRe-Retrieval 38.65 54.73 37.91 33.71 31.90 52.39 36.12 51.31 49.26
CoRe-Retrieval

+Reviews 38.22 55.51 37.98 33.66 31.77 51.53 34.98 50.32 47.16

CoRe-Description 38.58 54.00 36.71 32.55 30.71 52.36 35.85 51.05 48.54
CoRe-Description

+Reviews 38.41 54.87 37.64 33.40 31.54 51.94 35.46 50.68 47.74

CoRe 40.64 57.78 40.70 36.47 34.75 53.55 37.10 52.28 49.34
CoRe+Reviews 40.26 56.29 39.47 35.31 33.48 53.54 37.17 52.26 49.75

User Review: Lot of ad!

CoRe with Retrieved Reviews: Hi pal. Haha I know you like this little flashlight! And could I ask
for a 5-star rating? You know your support is the best award for this little flashlight thanks. Pal.

Retrieved Review-1: It is lot of help

Retrieved Review-2: Not lot of action.

CoRe: Thank for your message. Smart charge can help auto clean battery drain <app> when
charge. To be able to offer our <app> for free, advertising revenue is the only way to keep our
start up run. We will balance the proportion of the ads. Hope that you’re having a good day!

Retrieved Review-3: Easy to use thank a lot.

Retrieved Review-4: Too bad because I use it a lot.

Fig. 18. An example of the generated responses with the retrieved responses involved.
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7.15 Limitations of CoRe
Although the proposed CoRe enhances the performance of review reply generation, CoRe does
not handle two case types well, including the reviews that do not require responses and the
reviews with poor responses generated by CoRe. For the first case, we refer readers to the work on
summarizing which review features spur the responses [34, 63]. In this work, we are more focused
on the subsequent behavior for developers, i.e., responding to the reviews requiring responses.
For the second case type, we design a quality assurance filter based on the manually-annotated
review-response pairs in Section 6 to automatically learn the cases in which the proposed CoRe
does not perform well. The poorly-generated responses can be delegated to developers for further
inspection before posting.

Filter Design: The proposed quality assurance filter contains three main steps. We first prepare
the gold set for filter training. We employ the involved reviews and the corresponding responses
generated by CoRe in the human evaluation as our gold set. Each review and the corresponding
generated message are associated with scores which indicate the extent of accuracy to reply to
the review (as shown in Figure 10). To be conservative, we labeled the reviews that receive the
“accuracy” score of one, two or three from one annotator as “bad” and all the other reviews as “not
bad”. Then we extract the unigram tf-idf representations of the reviews as the features, since tf-idf
has been widely used in natural language processing for feature representation [23, 69]. We finally
train a Gaussian kernel SVM using stochastic gradient descent (SGD) as the learning algorithm
based on the dataset of reviews and their labels. The trained SVMwill be adopted to predict whether
the CoRe model generates a “bad” response for a user review.

Filter Performance:We split gold set into 10 folds based on stratified shuffle. For each fold, we
train a SVMmodel on the other 9 folds, and test the SVMmodel on the one fold. We finally obtained
the test results for every fold. Table 16 shows the predicts of all the folds. In terms of detecting
reviews for which the CoRe model will generate “bad” responses, the filter has 83.0% precision and
93.6% recall. Furthermore, it can reduce 31.8% of the “bad” responses. The results demonstrate the
usefulness of the proposed filter component for detecting the poorly-generated responses. We also
deployed the trained filter to the test set used in Section 5 and observed that the model performance
showed 40.55 in terms of BLEU-4 score with 2,106/14,727 (14.3%) “bad” responses removed, which
is slightly higher than the BLEU-4 score (40.34) reported in our earlier experiment using all the test
samples. Developers can focus on examining the “bad” responses during using the proposed CoRe
model. For the other reviews, developers can directly adopt the responses generated by CoRe.

Discussion on the Bad Cases. As can be seen in Table 5, 22 responses are labeled as “bad” by
the quality assurance filter. The first two authors then skim through the “bad” cases to further
inspect the reasons behind the “bad” performance. We find that most responses are semantically
consistent with the given reviews, but may dissatisfy users for the following three reasons:

(1) It asks users to raise the review rating: In the 22 “bad” responses, five are about asking users
to increase the rating, e.g., “Hi there, thanks a lot for your continuous support. If you rate <app>
with 5 stars, it will really encourage us. Thank you.”. Such responses generally respond to positive
feedback, such as “It’s the best camera app”. We find that among the five positive reviews, four are
rated below 4 stars. The responses reflect the importance of ratings to developers. Although asking
users to increase their given rating in responses is common for app developers [34], such responses
may not actually satisfy the users. For example, according to [34], only 2.4% users increase the
rating after a developer asks for a rating increase.

(2) It asks for more details about the reported issues based on template: We find that asking users
for more details about the reported issues accounts for the largest proportion (59.1%, 13/22) among
the responses, which is similar to the finding in [34]. Such responses seem to be template-based,
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Table 16. Predicted results of the cross evaluation of the quality assurance filter.

Predicted Results Actual Labels
Not Bad Bad

Predicted
Labels

Not Bad 73 15
Bad 5 7

e.g., “Thanks for your feedback. We always try to improve to keep our user happy. If you have any
suggestion for us on how we can do better, please let us know. Thanks.”. Without specific details
included, users may feel unsatisfied with the responses.
(3) It provides insufficient details for solutions to the provided issues: For the other four cases,

they are all about providing guidance to users to solve their issues. The solutions may not be
sufficient for users to solve the problems. For example, one review complained that “...I still didn’t
know about saving picture with its actual size. Always the picture is compressed to a smaller size after
editing...”, the generated response is “...You can solve this issue by going to your device’s setting about
the maximum image size and clicking on the preferred image size...”. Although a solution is provided
in the generated response, the users may still be unclear about the detailed steps for the setting. A
more detailed steps for solving the reported issues could satisfy the users more.

7.16 Threats to Validity
There are three main threats to the validity of our study.

(1) The scale of dataset. We directly use the publicly released data of RRGen provided by their
authors. The data include only review-response pairs of 58 free apps from Google Play Store.
The limited categories and number of studied apps may influence the generalization of the
proposed CoRe. Since the dataset is the only one with huge quantities of review-response
pairs at this time, we will eliminate this threat as soon as larger-scale datasets are publicly
available.

(2) The retrieved reviews may not always present high similarities. One of the reasons may be
the similarity measurement approach is simply based on tf-idf representations, in which
the tf-idf may not be the best approach to represent the semantics of the review texts [52].
Another reason is the available review-response pairs may be limited. Since involving more
complex approach for retrieving similar reviews could increase the burden of model training
and the effectiveness of tf-idf in review representation has already been demonstrated in [69],
we investigate the light-weight tf-idf approach in the paper. We will explore the impact of
different retrieval approaches and datasets on automatic review response generation in the
future.

(3) Bias in manual inspection. We invite 20 participants to evaluate the quality of 100 randomly
selected review-response pairs.We cannot guarantee that the judgements fully reflect ordinary
app users’ perceptions of the responses. However, the participants also belong to ordinary
app users and are familiar with most studied app categories. Additionally, a majority of
them have the experience of skimming app reviews or developers’ replies, which makes us
more confident about their judgements. Besides, the results of the human evaluation can be
impacted by the participants’ experience and their understanding of the evaluation metrics.
To mitigate the bias in manual inspection, we ensure that each review-response pair was
evaluated by five different participants. Besides, we randomly disrupt the order of the three
types of responses for each review, so that the influence of participants’ prior knowledge
about the response orders is eliminated.
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8 RELATEDWORK
We split the related work into three categories: 1) the work that conducts app review mining; 2) the
work that analyzes user-developer dialogue; and 3) the work that generates conversational short
text.

8.1 App Review Mining
App reviews are a valuable resource provided directly by the customers, which can be exploited by
app developers during the bug-fixing [12] and feature-improving process [25]. The essence of app
review mining lies in the effective extraction and summarization of the useful information from app
reviews. Iacob et al. [37] manually label 3,278 reviews of 161 apps into nine classes, and discover
that 23.3% of the feedback constitutes requirements from users, e.g., various issues encountered
by users. Due to the ever-increasing amount of reviews, previous studies resort to generic NLP
techniques to automate the information extraction process. For example, Iacob and Harrison [36]
use pre-defined linguistic rules for retrieving feature requests from app reviews. Di Sorbo et al. [62]
build a two-level classifiers to summarize the enormous amount of information in user reviews,
where user intentions and review topics are respectively classified. Developers can learn feature
requests and bug reports more quickly when presented with the summary. [67], [18], [25], and
[69], etc., employ unsupervised clustering methods to prioritize user reviews for better app release
planning. Nayebi, Farrahi, and Ruhe [53] adopt app reviews besides other release attributes for
predicting release marketability and determining which versions to be released.
Another line of work on app review mining is about predicting user sentiment towards the

app features or functionalities [29, 31, 32, 49]. For example, Guzman et al. [32] use topic modeling
techniques to group fine-grained features into more meaningful high-level features and then predict
the sentiment associated with each feature. Instead of treating reviews as bags-of-words (i.e., mixed
review categories), Gu and Kim [31] only consider the reviews related to aspect evaluation and
then estimate the aspect sentiment based on a pattern-based parser.

8.2 Analysis of User-Developer Dialogue
Analysis of user developer dialogue explores the rich interplay between app customers and their
developers [24]. Oh et al. et al. [54] discover that users tend to take a passive action such as
uninstalling apps when their inquires (e.g., user reviews) would take long time to be responded or
receive no response. Srisopha et al. [63] investigate which features of user reviews spur developers’
responses, and find that ratings, review length and the proportions of positive and negative words
are the most important features to predict developer responses. Both McIlroy et al. [51] and Hassan
et al. [34]’s studies observe the positive impact of developers’ responses on user ratings, for example,
users would change their ratings 38.7% of the time following a response. To alleviate the burden
in the responding process, Gao et al. [27] propose an NMT-based approach named RRGen for
automatically generating the review responses.

8.3 Short Text Conversation Generation
Short text conversation is one of the most challenging natural language processing problems,
involving language understanding and utilization of common sense knowledge [61]. Short text
conversation can be formulated as a ranking or a generation problem. The former formulation
aims at learning the semantic matching relations between conversation histories and responses
in the knowledge base, and retrieving the most relevant responses from the base for the current
conversation. Ranking-based approaches have the advantage of returning fluent and informative
responses, but may fail to return any appropriate responses for those unseen conversations. The
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generation-based formulation treats generation of conversational dialogue as a data-driven sta-
tistical machine translation (SMT) [17, 57], and has been boosted by the success of deep learning
models [64] and reinforcement learning approaches [41]. Gao et al. [28] perform a comprehensive
survey of neural conversation models in this area. The major problem of the generation-based
approaches is that the generated responses are often generic and not informative due to the lack of
grounding knowledge [73]. In this work, we propose to integrate contextual knowledge, including
app descriptions and retrieved responses, for accurate review response generation.

9 CONCLUSIONS AND FUTUREWORK
This paper proposes CoRe, a novel framework aiming at automatically generating accurate responses
for user reviews and thereby ensuring a good user experience of the mobile applications. We present
that employing app descriptions and the responses of similar user reviews in the training corpus
as contextual knowledge is beneficial for generating high-quality responses. Both automated
quantitative evaluation and human evaluation show that the proposed model CoRe significantly
outperforms the baselinemodels. The encouraging experimental results demonstrate the importance
of involving contextual knowledge for accurate review response generation. We also analyze the
advantages and limitations in this work, and plan to address the latter in the future.
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