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Abstract—Deep neural networks (DNNs) have achieved sig-
nificant success in a variety of real world applications, i.e.,
image classification. However, tons of parameters in the networks
restrict the efficiency of neural networks due to the large model
size and the intensive computation. To address this issue, various
approximation techniques have been investigated, which seek for
a light weighted network with little performance degradation in
exchange of smaller model size or faster inference. Both low-
rankness and sparsity are appealing properties for the network
approximation. In this paper we propose a unified framework to
compress the convolutional neural networks (CNNs) by combin-
ing these two properties, while taking the nonlinear activation
into consideration. Each layer in the network is approximated
by the sum of a structured sparse component and a low-rank
component, which is formulated as an optimization problem.
Then, an extended version of alternating direction method of
multipliers (ADMM) with guaranteed convergence is presented
to solve the relaxed optimization problem. Experiments are
carried out on VGG-16, AlexNet and GoogLeNet with large image
classification datasets. The results outperform previous work in
terms of accuracy degradation, compression rate and speedup
ratio. The proposed method is able to remarkably compress the
model (with up to 4.9x reduction of parameters) at a cost of
little loss or without loss on accuracy.

I. INTRODUCTION

As neural networks become deeper and deeper, the repre-
sentation ability of neural network keeps improving, leading
to significant performance promotion in a variety of tasks.
However, the model size and the computation cost of neural
networks are also increasing due to the huge amount of
weights learned, which results in low throughput in infer-
ence stage and restrains the deployment on resource-limited
systems. For example, embedded devices may lack enough
storage and computation power to execute the giant networks.
Meanwhile, deep neural networks are demonstrated to be
over-parameterized [1], which motivates researchers to ex-
plore efficient approaches to make the deep models compact.

Approximating the deep models involves removing the
redundancy and seeking for simplified structures such that
the network after approximation may retain the performance
on original tasks. Low-rankness and sparse connection are the
most commonly applied assumptions when approximating a
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model. The illustration is presented in Fig. 1. Sparse connec-
tion can be realized by pruning a pre-trained network, which
is the most straightforward approach. A hard thresholding
approach is proposed in [2], which achieves high sparsity
by removing the weights with less importance. Structured
sparse connections can be learned by imposing group sparse
regularizations during the training [3], as shown in Fig. 1(c).
It also favors computation acceleration. In additional to sparse
connection, low-rankness is another desired structure for
model approximation. The weight matrices in the neural
networks of low-rank can be further decomposed into smaller
matrices, so as to reduce the amount of parameters as well as
the computation cost [4], [5], as shown in Fig. 1(b). Tensor
decomposition is applied in [6], where the weight tensor in
fully-connected (FC) layer is approximated by a series of
smaller kernels. Similar to sparse connection networks, the
low-rank filter of neural network can also be learned by
imposing regularizations [7], [8]. An intuitive extension of
these work is to consider both low-rank structure and sparse
structure simultaneously. In [9], a layer in the pre-trained
neural network is decomposed into a low-rank component
and a sparse component by a greedy algorithm. The obtained
networks are compressed but not accelerated due to the non-
structured sparse weights.

Performing approximation or pruning to a pre-trained net-
work may inevitably result in performance loss. In order to
retain the accuracy of a pre-trained model, some approaches
aim to minimize the reconstruction error of the feature maps
in each layer through solving an optimization problem with
specified constraints on the rank or sparsity of the filters. The
reconstruction error is measured between the linear response
in original network and approximated one [9], [10]. Since
the non-linearity such as Rectified Linear Units (ReLU) [11]
follows the linear filters in most neural networks, only the
error of positive response is accumulated and the error of
negative response is omitted, which makes the accuracy more
dependent on the positive response reconstruction. In [5], a
method for reconstructing non-linear response is proposed.

In this work, we propose a unified approximation frame-
work for CNNs which approximates the convolutional layers
with two components, including a structured sparse com-
ponent and a low-rank component. In contrast to [9], our
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Fig. 1: (a) Transform convolution to matrix multiplication;
(b) Approximate weight matrix W using two matrices with
lower-rank; (c) Impose structured sparsity on weight matrix
W.

constraints not only facilitate model compression but also
favors acceleration because of the structured sparse weights
[3]. We retain the accuracy of the model by approximating
the nonlinear response after activation. The layer-wise net-
work approximation problem is formulated as minimizing the
reconstruction error of the response after non-linear ReLU. To
overcome the resulted difficulty of non-convex optimization,
we propose a convex relaxation scheme which considers the
constraints for structured sparsity and low-rankness, and then
solve it with an extension of alternating direction method
of multipliers (ADMM) [12]. Moreover, we prove that the
extended ADMM algorithm converges to the optimal solution
of the relaxed problem.

The proposed method is evaluated on well-known DNN
architectures, including VGG-16 [13], NIN [14], AlexNet
[15] and GoogLeNet [16]. For VGG-16 with the CIFAR-
10 dataset, we achieve 4.4x model compression with only
0.4% accuracy drop. Meanwhile, with the compressed model
the inference is accelerated by 2.2x. For AlexNet with the
ImageNet dataset, we achieve 4.9x model compression at
the cost that the top-5 accuracy drops slightly from 81.3% to
80%. For GoogLeNet with the ImageNet dataset, the proposed
method also brings 2.9x reduction of the model parameters
without any degradation on the accuracy of inference. These
experimental results reveal that the proposed approximation
framework is able to remarkably compress the CNN models

371

while keeping high accuracy.

The rest of this paper is organized as follows. In Sec-
tion II, related literature on DNN compression and accelera-
tion is summarized. The problem formulation of the proposed
methodology is given in Section III. Section IV presents a
numerical optimization algorithm for solving the problem.
The experimental results are reported in Section V, and
Section VI concludes the paper.

II. RELATED WORK

Neural Network Sparsification. Despite the appealing per-
formance of the deep neural network, it has been demonstrated
that there is much redundancy which leads to computation
overhead and large model size. Therefore, sparsifying some
over-parameterized layers in neural network is a straightfor-
ward method to eliminate the redundancy while preserving the
performance. The majority of the parameters in a sparse layer
are zeros, thus the parameters can be stored with compressed
representation, e.g., compressed sparse row (CSR) format, for
size reduction. A three-stage pipeline is proposed in [2]. The
parameters that are smaller than a threshold are considered
as less important and are set to zeros. Then retraining is
performed on the sparse structure to restore the accuracy.
However, the sparse pattern is non-structured which has
limited benefit for speedup during inference due to the poor
weight locality. [17] proposes to prune the entire convolution
kernel rather than single element based on the intensity. A
structured sparse learning algorithm is proposed in [3], which
enables to learn a network with structured sparse network
by applying group sparse regularizations during training.
Since structured sparsity leads to zero-columns and zero-
rows in the lowered matrices, [3] further proposes to reduce
the dimension of lowered matrices by removing these zero-
columns and zero-rows, which reduces the dimension of the
lowered weight matrix when applying General Matrix-Matrix
Multiplication (GEMM) function and accelerates inference.
A channel pruning method is proposed in [10], which can
be considered as a special case of structured sparsity. The
difference is that channel pruning is performed on a pre-
trained model rather than training the model from scratch. [10]
formulated the problem as lp-norm minimization problem,
trying to find the “informative” channels of the feature map
and the corresponding weights. Instead of trying to minimize
the reconstruction error layer by layer, [18] targets at a
unified goal which is to minimize the reconstruction error
of important response in the final response layer. In this
paper, we are more interested in exploring structured sparsity
since it not only facilitates compressing the networks but also
acceleration.

Low-Rank Approximation. In addition to sparsifying a
network, low-rank approximation is another sort of approach
which can be applied for both network compression and ac-
celeration. In modern convolutional neural networks (CNNs)
structure, filters are usually a 4-D tensor. Some tensor de-
composition techniques are leveraged for acceleration and
compression. A straightforward idea is to replace the 4-D



tensor with two consecutive tensors with lower-rank [19].
In addition, other kinds of tensor decomposition can also
be applied. In [6], fully-connected layers are converted to
the Tensor Train format, resulting in compression by a huge
factor. CP-decomposition of the filter tensors is proposed in
[20]. A relevant approach to low-rank approximation is tensor
sketching [21]. The difference is that low-rank approximation
will increase the network depth since an original layer will be
decomposed into multiple layers. In order to conduct low-rank
approximation more efficiently, methods for training neural
networks with low-rank filters are investigated [4], [7], [8],
[22].

Most of those low-rank approximation-based methods for
a pre-trained model like [19], [23] consider reconstructing
the response of linear block of a network, while ignoring the
following non-linear activation function like ReLU [11] which
is widely applied in DNNs. A method for low-rank approx-
imation of non-linear response in convolutional networks is
proposed in [5], which is demonstrated to have more speedup
than approximating linear-response only.

Although both low-rank approximation and network spar-
sification are appealing, there are not so much work that
consider how to combine them. Some previous work aims
to train a network with both group-sparse and low-rank
regularizations [8], [24], which impose the constraints of low-
rank and sparse on the filters at the same time. Considering
that filters tend to be both low-rank and sparse, a layer in
a pre-trained DNN is approximated by the sum of a non-
structured sparse component and a low-rank component for
compression in [9]. Similar to [19], it relies on reconstructing
the linear response of a layer to constrain accuracy loss. A
potential problem is that non-structured sparsity may not favor
computation acceleration well.

Although there are existing work combining the low-rank
approximation and network sparsification and the work ap-
proximating the non-linear response of network, no one has
combined all the ideas together. In this work, we propose to
approximate the layers in CNN with the sum of a structured
sparse component and a low-rank component, and minimize
the reconstruction error, while taking the non-linear activation
into account. It results in a unified approximation framework
for compressing and accelerating DNN models.

I1I. PROBLEM FORMULATION

In this section, we introduce our mathematical formulation
for network approximation using structured sparse and low-
rank decomposition, while taking non-linearity into account.
To this end, we propose to formulate the problem into a
unified optimization model. In the following context, we focus
on CNNs which involve a large model size.

In an FC layer of a CNN, the output feature map can be
computed as

Y =WX, ey

where X € R™ and Y € R" represent the input feature
vector and output response, respectively. W € R™*™ denotes
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the weight matrix. For a convolutional layer the convolu-
tion operation can also be represented as Equation (1). The
illustration is shown in Fig. 1(a). The convolution filter is
W € Rxexkxk where k is spatial size, ¢ is the number of
input channels and n is the number of filters. The filter can
be reshaped to a matrix with size n-by-k2c. The input X is
lowered to a matrix such that each k2c volume involved in a
convolution forms a column. Then the convolution operation
is converted to matrix multiplication.

The information loss is inevitable when we approximate
the original filters by low-rank or sparse filters, which may
cause performance degradation. In order to compress the
network and accelerate the computation, we perform low-rank
approximation and network sparsification simultaneously. The
output feature maps of a layer is generated by the sum of
convolving with each filter. In order to preserve the perfor-
mance, we aim at minimizing the reconstruction error of the
response generated by the approximated filters in each layer
after activation. An example block structure in the network is
demonstrated in Fig. 2. Then, the problem is formulated as
follows:

N
. 2
min ;ﬂ 1Y; = r((A+ B)Xi)|r,

st. ||All, < S, rank(B) < L.

Here Y; and X represent the output feature map and the
input feature map of a layer, respectively. Structured sparse
component A and low-rank component B are two weight
matrices we are looking for, each of which is the lowered
matrices of a 4-D tensor. NV is the total number of samples
used for approximation. ||-|| is Frobenius norm. r(-) is the
activation function in the network, i.e., ReLU(:). S and L are
user-defined target sparsity level and target rank for the filters.

2

IV. OPTIMIZATION METHODOLOGY
A. Problem Relaxation

Solving Problem (2) directly involves both [y minimization
and rank minimization, which is NP-hard. Besides, we want
A to be structured sparse, which leads to extra difficulty.
To tackle this challenge, we apply convex relaxation to the
constraints. The rank constraint on B is relaxed by nuclear
norm of B, which is the sum of the singular values of B. As
for the [y norm constraints, a general way is to relax it by [y
norm which is convex and has good performance in imposing
sparsity. However, as we discussed above, structured sparse
patterns can be more easily used for computation acceleration.
Therefore, here we relax [y constraint by lo; norm (the
sum of the Euclidean norms of the columns) such that the
zero elements in A appear column-wise. Then, the original
problem is reformulated as

N
min Y [V = (A + B)X)|% + M Al + X 1B

=1
3
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Fig. 2: Structure combining sparse and low-rank decomposition.

where ||-||, ; i8 l2.1 norm and ||-||, is nuclear norm. A, and Ay
are coefficients of the relaxed terms. The problem (3) now is a
convex optimization problem. To solve it, we make use of the
alternating direction method of multipliers (ADMM), which is
widely used in large-scale problems arising in statistics [12].
Especially, the optimal solution of the sub-problems involving
l,1-norm and nuclear norm can be obtained in closed-form as
in subspace learning [25] and the singular value thresholding
(SVT) operator [26], respectively.

By introducing an auxiliary variable M, the Problem (3)
can be rewritten as

N
3 2
A{rg};w§ IY; = r(MX)|[3 + i Al + A2 B,

st. A+ B=M.

“

Then the augmented Lagrangian function of Problem (4) is

N
Li(A,B,M,A) = > |Y; — r(MX,)|% + A || Al
=1
t
+ 22| Bll, + (A, A+ B~ M)+ |A+B- M|,
5

where ¢ > 0 is the penalty parameter and A is Lagrange
multiplier. (-, ) represents the inner product operator.

B. Variables Update

ADMM  solves the minimization problem  of
L:(A,B,M,A) iteratively. The variables are alternatively
updated in each iteration. To update A, B, M in iteration
k 4+ 1, our algorithm takes two steps. Firstly, we consider the
following three sub-problems.

2

t A
min Ay [|All, , + = ||[A+ By — My, + —==|| | (©6)
A ’ 2 t F
) t . AL ll?
min A | B, + = | B+ Ay — M, + =%|| | 7)
B 2 t F
N
min Y |[Y; — r(MX,)||% + (Ar, Ay + By, — M)
M i=1
t o . 2
+fHAk+Bk.—MH . ®)
2 F
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All these three problems are proximal mapping problems.
For Problem (6), the optimal solution is given by

. A

Ay = ProXay, (M — B, — —). )
t 2,1 t

The explicit representation of Equatli{)n (9) can be derived
based on [25]. Let C = M}, — By, — Tk’ then the column ¢

in Ay is given as

AL

I[C:.ill, — 5+ . A
¢ A [Clas  if[[[Clll, > —
[Ak]:,i = ||[C]:,i 2 ? t
0, otherwise.
(10)
For Problem (7), the optimal solution is given by
. . A
Bk :prOXATQHH*(Mkakak) (11)

The explicit representation of Equation (11) can be obtained

based on SVT operator D, [26]. Let D = M), — Ak _ Ok

We perform singular value decomposition on D such tﬁat
D =UXV, where ¥ = diagA({ai}lgigr) and o; is the i-th
largest singular value. Then By, is given by

B, =UD,, (2)V (12)

where D, () = diag({(c; — 22)+}).

For Problem (8), it is non-trivial to derive the closed-form
of the optimal solution of the sub-problem with respect to
M since r(-) is a piecewise linear function. However, the
function is continuous and convex so that we can approach
the optimal solution of M iteratively by applying gradient-
based method. In our implementation, we apply stochastic
gradient descent (SGD) to solve it, and set learning rate as
10~3 and momentum as 0.9.

Up to now we are extending the classical ADMM to a three-
block separable convex programming. This direct extension,
however, is not necessarily convergent, as shown in the
previous works [27], [28]. To address this issue, a simple
correction step was proposed in [27], shown as follows.

B B, I (r—-1I O\ (By-B

Mk—i—l = Mk —a | 7T I o Mk - Mk

Ak‘+1 Ak 0 O I Ak - Ak-
13
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where O denotes zero matrix. 7 is set to 5. « is set to %.
With this correction step, the extended ADMM can ensure
the global convergence.

The overall optimization procedure is summarized in Algo-
rithm 1. It starts with an initialization for all the variables and
hyper-parameters (line 1). Then these variables are updated
alternatively in each iteration based on the equations or SGD
algorithm, as described above (line 3 — line 6). Each iteration
ends up with a correction step presented as Equation (13)
(line 7). The entire optimization procedure exits when the
pre-defined condition is satisfied.

Algorithm 1 ADMM for solving Problem (4)

Input: Feature maps Y;, X;, i = 1--- N, given Ay, As.
Output: Structured sparse matrix A & low-rank matrix B.
1: Initialize k& < 0, Ao, Ag, By, My, error tolerance e, t;
2: while not converged do

3: Calculate Ak by Equation (10);

i -

5

Calculate B;Af by Section 1V-B;
Calculate M), by solving Problem (8) with SGD
method;

6: Ak<—Ak+t(Ak+BAk—Mk>;

7: Perform correction step by Equation (13);
8: k<« k+1;

9: end while

10: return A, and By;

C. Convergence Analysis

In this subsection, we prove the convergence of Algo-
rithm 1. Let fy(M) = 3.0, [[Y; — r(M X)) |5, f2(A) =
A ||All, . and  f3(B) A2 ||B||,. Let m denote the
vectorization of M, ie., m = vec(M), and similarly, let
a =vec(A), and b = vec(B).

Using these notations, the problem in Equation (4) takes
the following generic form

AH}BiHM fi(M) + f2(A) + f3(B

) )

)
Cla + CQb — Cgm =C,

where C'1, Cs, and C'5 are the identity matrices, and ¢ = 0.
The convergence of ADMM for solving the standard form
(14) was studied in [27], [28]. We establish the convergence
of our algorithm by transforming the problem in Equation (4)
into a standard form (14). Note that our algorithm alternates
between three blocks of variables, A, B and M. According
to the definitions of f1(M), f2(A), and f3(B), it is easy to
verify the problem in Equation (4) and our algorithm satisfy
the convergence conditions of the problem in Equation (14),
as stated in [27]. Thus, we have the following theorem.

(14)
S.t.

Theorem 1. Consider the problem in Equation (4), where
fi(M), f2(A), and f3(B), are convex functions, and CY,
C,, and Cj5 are the identity matrices, and have full column
rank. The sequence { Ay, By, My} generated by Algorithm 1
converges to the optimal solution {A*, B*, M*} of the
problem in Equation (4).
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TABLE I: Results on VGG-16 with CIFAR-10

Layer CR(A)(%) CR(B)(%) CR(A+ B)(%)
convl-1 0.0 100.0 100
convl-2 54 52.1 57.5
conv2-1 54 38.2 43.6
conv2-2 2.2 28.6 30.8
conv3-1 2.8 47.7 50.5
conv3-2 4.0 54.3 58.3
conv3-3 10.0 59.0 69.0
conv4-1 2.0 16.0 18.0
conv4-2 2.0 224 24.4
conv4-3 4.0 16.3 24.3
conv5-1 2.0 9.8 11.8
conv5-2 2.0 8.7 10.7
conv5-3 2.0 6.7 8.7

fcl 442 0.0 442

fc2 36.2 0.0 36.2

fc3 24.0 0.0 24.0

CR 22.5% (4.44x reduction of model size)
Speed-up 2.2%
Accu. | 0.40%

V. EXPERIMENTAL RESULTS
A. Experimental Setup

Algorithm 1 takes in the input and output feature maps
generated from the inference on some sample data, and
outputs the approximated network layers. The tested CNNs
include VGG-16 [13], NIN [14], AlexNet [15] and GoogLeNet
[16]. For each network, we first obtain its approximation, and
then fine-tune the network based on the obtained structures
to restore the accuracy. During the approximation, different
layers use different weight coefficients A; and As. In our
experiments, we find out setting A2 to be 2.5 ~ 3 times larger
than \; gives good trade-off between accuracy and model
compression rate. And we let A\; ranges from 0.08 ~ 0.3.
The penalty parameter ¢ in (5) is set to 1073, The runtime
of Algorithm 1 varies from layer to layer, ranging from 10
minutes to half an hour.

The inference is conducted on Caffe [29] using CIFAR-
10 and ILSVRC-2012, i.e., ImageNet [30]. After the network
approximation, a small initial learning rate of 10~° is used
in the fine-tuning step. We use three metrics for evaluation,
including accuracy loss, compression rate (CR) and speedup
ratio. The CR is calculated as

__ Approximated layer size

CR = x 100%.

— - 15
Original layer size (15)
The accuracy loss is the degradation on accuracy after approx-
imation, denoted by “accu. ]” in the table. The “speed-up”
ratio indicates the acceleration for inference.

B. Experiments on CIFAR-10

1) VGG-16: VGG-16 [13] network is a convolutional neu-
ral network consisting of 13 convolution layers and 3 FC
layers. All the convolutional filters have the same spatial size
of 3 x 3. We test the proposed method with experiments on
the CIFAR-10 dataset which consists of 50K training images



TABLE II: Results on NIN with CIFAR-10

Layer CR(A)(%) CR(B)(%) CR(A+ B)(%)
convl 0.0 18.4 18.4
ccepl 0.0 100.0 100
ccep?2 0.0 100.0 100
conv?2 0.0 16.9 16.9
ccep3 0.0 100.0 100
ccep4 0.0 100.0 100
conv3 0.0 38.2 38.2
ccepb 0.0 100.0 100
ccepb 0.0 100.0 100

CR 36.0% (2.77x reduction of model size)
Speed-up 2.2%
Accu. | 0.41%
TABLE III: Comparison on CIFAR-10
Model Method ‘ Accu. | ‘ CR ‘ Speed-up
Original 0.00% 1.00 1.00
VGG-16 | ICLR’17 [17] 0.06% 2.70 1.80
Ours 0.40% 4.44 2.20
Original 0.00% 1.00 1.00
NIN ICLR’16 [7] 1.43% 1.54 1.50
IJCAI'18 [21] 1.43% 1.45 -

Ours 0.41% 2.77 1.70

and 10K test images. We first train a VGG-16 network from
scratch to obtain the baseline, which has an accuracy of
92.05%. To make the approximation, 1000 images are selected
from training set for inference and the input and output feature
maps are collected for Algorithm 1.

The approximation is performed on each layer sequen-
tially. The layer-wise approximation results are shown in
TABLE 1. In our experiment, we find out approximating
the first convolutional layer may lead to significant accuracy
drop. Therefore, the first layer is not approximated. The
sparse component A is stored in CSR format. Moreover, we
constrain the sparse component A to be structured sparse to
accelerate the computation as in [3]. The low-rank component
is represented by the product of two smaller matrices. For FC
layers, we only use the sparse component for approximation
to reduce accuracy drop.

The performance comparison with other previous work
[17] is presented in TABLE III. With the approximation, the
model size is reduced by 4.44x, which corresponds to 2.2x
speedup on inference. Both compression rate and speedup
ratio outperform [17]. Without fine-tuning, there is some
classification accuracy drop. In order to restore the accuracy
of the compressed model, we retrain the compressed network
with the training set for 5 epochs. With this fine-tuning step
the accuracy loss reduces from 1.8% to only 0.40%, which
becomes very close to the accuracy of the original VGG-16.

If a shallow layer is approximated, the approximation error
may be accumulated when deeper layers are approximated. In
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Fig. 4: Comparison of reconstructing linear response and non-
linear response: (a) layer conv2-1; (b) layer conv3-1.

order to handle this issue, we take the ‘asymmetric’ strategy
used in [5]. We approximate the layers from shallow to deep.
When approximating a deep layer, use the response produced
by all previous layers instead of the non-approximate response
as the input feature map X;. Fig. 3 shows the comparison of
classification error increase. We can observe that with more
layers being approximated, the performance becomes worse
for both strategies. However, the asymmetric version loses less
accuracy.

We further compare the performance between reconstruct-
ing non-linear response and reconstructing linear response.
We perform the comparison on a single layer each time, while
the remaining layers are kept unchanged. In Fig. 4, we plot
the relation between the CR and the accuracy degradation
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Fig. 5: Approximated filters of conv3-1. Blue dots have
non-zero values. Low-rank filter B with rank 136 is decom-
posed into UV, both of which have rank 136. (a) Matrix U;
(b) Matrix V. (c) Column-wise sparse filter A.

of two approaches of different layers. The performance is
evaluated by the accuracy drop compared with original model.
We take two convolutional layers in two different stages
of the VGG-16, including conv2-1 and conv3-1. Fig. 4
shows that under the same CR, reconstructing non-linear
response achieves lower accuracy drop than reconstructing
linear response, which verifies the advantage of reconstructing
the non-linear response. In Fig. 5, we visualize the sparse
filter and low-rank filter after the approximation of layer
conv3-1. B has rank 136 and it can be further decomposed
by B = UV, where both U and V have rank 136.

2) NIN: Network-in-network (NIN) [14] has 9 convolu-
tional layers among which 6 layers have a spatial size of
1 x 1. Considering that these 1 x 1 convolutional layers have
less contribution to the overall model size and computation,
we focus on remaining three layers which have spatial size
of 3 x 3 or 5 x 5. We present the layer-wise approximation
results in TABLE II. It can be observed that for all the
approximated convolutional layers, only low-rank component
is used and structured sparse didn’t show up, which means
approximating NIN using CIFAR10 dataset reduces to low-
rank approximation and sparse components are not beneficial
to the objectives. It indicates that the proposed unified frame-
work is flexible to find good solutions and does not rely on
prior assumptions to achieve good results.

Experimental results using the same network (i.e., NIN)
and CIFARI10 are reported in previous work [7], [21]. The
comparison of accuracy loss, compression rates and the ac-
curacy is shown in TABLE III. We can see that the number
of parameters is reduced by 2.77x and the inference time
is accelerated by 1.70x, with only 0.41% accuracy loss
compared with original model. All these three metrics are
significantly better than previous work [7], [21].

C. Experiments on ImageNet

1) AlexNet: AlexNet [15] has 5 convolutional layers and 3
FC layers. It is tested for the ImageNet classification task. We
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TABLE IV: Results on AlexNet with ILSVRC-2012

Layer CR(A)(%) CR(B)(%) CR(A+ B)(%)
convl 0.0 100.0 100.0
conv2 21.4 23.6 45.0
conv3 30.0 229 529
convié 0.0 32.6 32.6
conv5 0.0 26.0 26.0
fcl 12.8 0.0 12.8
fc2 26.2 0.0 26.2
fc3 18.8 0.0 18.8
CR 18.0% (5.56x reduction of model size)
Speed-up 1.1x
Top-5 accu. | 1.27%

evaluate the top-5 accuracy with single-view. The ILSVRC-
2012 dataset consists of 1.2 million training images and 50
thousand test images. Images are resized with 256 pixels on
the shorter side. The testing image is on the center crop of 224
X 224 pixels. We use the pre-trained model provided by Caffe
Model Zoo as the baseline. In our experiment, we first select
1500 images from the training set and collect their responses
for building the approximate network. The layer-wise approx-
imation results are demonstrated in TABLE IV. The first two
convolutional layers of AlexNet are not approximated, in order
to preserve good accuracy. For FC layers, again we only use
the structured sparse component for approximation.

The compression rates and the accuracy comparison are
shown in TABLE VI. From the table we see that the network
is compressed by more than 5x, which outperforms [7],
[31], and [18], while the top-5 accuracy drop is only 1.3%.
This reveals that the proposed approximation framework can
remarkably compress AlexNet while keeping good accuracy.

2) GoogLeNet: GoogLeNet [16] is another widely used
network in image recognition and classification. Different
from AlexNet, GoogLeNet combines two spatial sizes of
convolutional filters, 3 x 3 and 5 x 5, in each inception block.
In order to collect the input samples for optimization, we use
a pre-trained model provided by Caffe Model Zoo to perform
inference and dump the input and output feature maps of
each convolutional layer. After performing approximation on
GoogLeNet, both model size and inference time are reduced.
The layer-wise approximation results are shown in TABLE V.
The comparison of accuracy loss, compression rates and
accuracy are shown in TABLE VI. We can see that the model
size is reduced by 2.87 x and the inference time is accelerated
by 1.35x, without loss on accuracy. All these three metrics
are significantly better than previous works using the same
network model and dataset [7], [18], [31].

VI. CONCLUSION

In this paper, we have proposed a unified approximation
model for deep neural networks with simultaneous low-rank
approximation and structured sparsification. It also considers
the non-linear activation to retain the accuracy. To obtain
this model, a layer-wise optimization problem is presented,
relaxed, and solved with an extended ADMM algorithm



TABLE V: Results on GoogLeNet with ILSVRC-2012

Layer CR(A)(%) CR(B)(%) CR(A+ B)(%)
convl 0.0 100.0 100.0
conv2 0.0 100.0 100.0
inception-3a 2.1 31.1 33.2
inception-3b 5.4 39.8 453
inception-4a 3.8 28.6 32.4
inception-4b 2.3 23.7 26.1
inception-4c 8.9 29.9 38.9
inception-4e 2.7 23.7 26.5
inception-5a 2.4 28.8 31.2
inception-5b 1.6 31.6 333
fc 35.0 0.0 35.0
CR 34.8% (2.87x reduction of model size)
Speed-up 1.35%
Top-5 accu. | 0.00%

TABLE VI: Comparison on ILSVRC-2012

Model Method ‘ Top-5 Accu.| ‘ CR ‘ Speed-up
Original 0.00% 1.00 1.00
AlexNet ICLR’16 [7] 0.37% 5.00 1.82
ICLR’16 [31] 1.70% 5.46 1.81
CVPR’18 [18] 1.43% 1.50 -
Ours 1.27% 5.56 1.10
Original 0.00% 1.00 1.00
GoogleNet ICLR’16 [7] 0.42% 2.84 1.20
ICLR’16 [31] 0.24% 1.28 1.23
CVPR’18 [18] 0.21% 1.50 -
Ours 0.00% 2.87 1.35

whose convergence is provably guaranteed. The effectiveness
of the proposed approximation framework is verified on
VGG-16, NIN, GoogLeNet and AlexNet. By sacrificing little
accuracy, VGG-16 and AlexNet are compressed by up to
5.56x. GoogLeNet is compressed by nearly 3x without loss
of accuracy. What’s more, since structured sparse filters and
low-rank filters are independent to each other, more inference
speedup may be expected if taking actual architecture and
parallel computing into account.
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