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Introduction

» Deep neural networks keep setting new records;
» More and more difficult tasks;
» The change on models?

Because You Watched... You'll Love...

1

Virtual Assistant Recommendation System
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Trend on the Models

P> Performance is getting better;
> Models are going deeper;

» Size is growing larger;

» Would this be a problem?
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1 Alfredo Canziani, Adam Paszke, and Eugenio Culurciello (2016). “An analysis of deep neural network models for prac-
applications”. In: arXiv preprint arXiv:1605.07678.
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Challenges

» More applications need to be deployed on end-point devices.
» Smartphones
» Drones

» Cameras
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Model Size

Hard to distribute large models through over-the-air update

This item is over 100MB.

Microsoft Excel will not download
until you connect to Wi-Fi.

Cancel OK
A

2Song Han and William J Dally (2018). “Bandwidth-efficient deep learning”. In: Proc. DAC, pp-1-6.
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Energy Efficiency

225,
o b o AlphaGo: 1920 CPUs and 280 GPUs, |
0.0 $3000 electric bill per game

on mobile: drains battery |
on data-center: increases TCO W

3Song Han and William J Dally (2018). “Bandwidth-efficient deep learning”. In: Proc. DAC, pp-1-6.
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» Transform convolution to matrix multiplication
» Unified calculation for both convolution and fully-connected layers

7/23




Property: Sparsity*®
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Sparse DNN

» Sparsification: weight pruning;
» Compression: compressed sparse format for storage;
» Potential acceleration: sparse matrix multiplication algorithm.

4Wei Wen et al. (2016). “Learning structured sparsity in deep neural networks”. In: Proc. NIPS, pp. 2074-2082. A
5Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep Neural Networks”. In: i:
Proc. ICCV.
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Property: Low-Rank®,’
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Low-rank DNN

» Low-rank approximation: matrix decomposition or tensor decomposition.

» Compression and acceleration: less storage required and less FLOP in computation.

8Xiangyu Zhang et al. (2015). “Efficient and accurate approximations of nonlinear convolutional networks”. In:

Proc. CVPR, pp. 1984-1992.

“Xiyu Yu et al. (2017). “On compressing deep models by low rank and sparse decomposition”. In: Proc. CVPR,

pp. 7370-7379.
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Non-linearity Approximation®

3 .

> | | | » Analyze the output error caused by approximation
1 / - > Activation unit: ReLU

0 _‘2 0 ‘2 » Error more sensitive to positive response;

» Enlarge the solution space.
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P> X: input feature map
P> Y: output feature map

8Xiangyu Zhang et al. (2015). “Efficient and accurate approximations of nonlinear convolutional networks”. In:
Proc. CVPR, pp. 1984-1992.
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Our ldea: Unified Structure
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X WXE:

ReLU =¥

X —

» Simultaneous low-rank approximation and network sparsification;
» Non-linearity is taken into account;

» Acceleration is achieved with structured sparsity;

> Flexibility between two properties.




Formulation

Given a pre-trained network, the goal is to minimize the reconstruction error of the response
in each layer after activation using sparse component and low-rank component.

min ZHY —r((A+B)Xi)|f,

HAHo <5,
rank(B) < L.

P> X: input feature map
> Y: output feature map

Not easy to solve: [y minimization and rank minimization are both NP-hard.
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Relaxation

2
mmz 1Y: = r((A + B)Xi) [ + A1 Al + X2 (1B,
i=1

» The [y constraint is relaxed by /> 1 norm such that the zero elements in A appear
column-wise;

» The rank constraint on B is relaxed by nuclear norm of B, which is the sum of the
singular values;

> Apply alternating direction method of multipliers (ADMM) to solve it;

- =
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Alternating Direction Method of Multipliers (ADMM)

Reformulating the problem with an auxiliary variable M,

N
. 2
min S |Yi — r(MX)|[7 + A ALy, + 2 |IBI
T =1
st. A+B=M.

Then the augmented Lagrangian function is

L(A,B,M,A)

N
=7 ¥ — r(MXIE + A1 [l + Bl + (A,A + B~ M) + 2 4+ B~ M2
i=1

B==
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Alternating Direction Method of Multipliers (ADMM)
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Iteratively solve with following rules. All of them can be solved efficiently.

2
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Solving /> 1-norm

. A
min Al HAHZ,I 3 HA +Bk—Mk-|-7k

F
Closed Form Update Rule®

Ay

Arrt =proxay  (Mi — B = =7),
A
C=M,— B, — 7"

I ill, — 2 Al
— o [Cli, A (|[Cll, > —;

A1l = ICLl 2ot
0, otherwise.

L/
®Guangcan Liu et al. (2013). “Robust recovery of subspace structures by low-rank representation”. In: IEEE TPAMI 35
pp. 171-184.
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Solving Nuclear-norm

t Ay 2
min Ao B, + & HB+Ak+1 .

F

Closed Form Update Rule'®
Byt = PrOXLzH.” (Mk _Ak—l—l - _)7
A
D =M~ A — =,

A
Bii1 = UD», (X)V, where Dy, (%) = diag({(0; — 72)+}).

10 Jian-Feng Cai, Emmanuel J Candés, and Zuowei Shen (2010). “A singular value thresholding algorithm for matrix
completion”. In: SIAM Journal on Optimization (SIOPT) 20.4, pp. 1956—1982.
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Solving M

N
. t
min > N1Yi = r(MX,) |7 + (Ax, Akt + Bst — M) + 5 Akt + Byt — M|
i=1

Gradient-based optimization

» Can be solved using first-order condition, but computing matrix inverse in each
iteration is expensive.

» Convex problem. Use SGD to solve it efficiently.
» GPU can accelerate the process.

B==
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Comparison on CIFAR-10 dataset

Model | Method | Accuracy | | CR | Speed-up

Original 0.00% 1.00 1.00

VGG-16 | ICLR17" 0.06% 2.70 1.80
Ours 0.40% 444 2.20

Original 0.00% 1.00 1.00

NIN ICLR’1612 1.43% 1.54 1.50
IJCAI'1813 1.43% 1.45 -
Ours 0.41% 2.77 1.70

"Hao Li et al. (2017). “Pruning filters for efficient convnets”. In: Proc. ICLR.

2Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In: Proc. ICLR.

3Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin (2018). “Network Approximation using Tensor icTal
Sketching”. In: Proc. IJCAI, pp. 2319-2325.
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Linear vs. Non-linear

—— Non-linear —— Linear
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Comparison of reconstructing linear response and non-linear response: (a) layer conv2-1; (b) layer conv3-1.
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Approximation Example

21/23

1000 1500




Comparison on ImageNet dataset

Model | Method | Top-5Accu.l | CR | Speed-up

Original 0.00% 1.00 1.00

AlexNet ICLR’ 16" 0.37% 5.00 1.82
ICLR’'16'° 1.70% 5.46 1.81
CVPR’18'6 1.43% 1.50 -

Ours 1.27% 5.56 1.10

Original 0.00% 1.00 1.00

GoogleNet ICLR'16"" 0.42% 2.84 1.20
ICLR’'162 0.24% 1.28 1.23

CVPR’18%3 0.21% 1.50 -

Ours 0.00% 2.87 1.35

4Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In: Proc. ICLR.
15Yong-Deok Kim et al. (2016). “Compression of deep convolutional neural networks for fast and low power mobile am

applications”. In: Proc. ICLA. :
8Ruichi Yu et al. (2018). “NISP: Pruning networks using neuron importance score propagation”. In: Proc. CVPR.

CTAl

22/23



Conclusion
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A unified model for compressing the deep neural networks with low-rank approximation
and network sparsification, while taking non-linearity into consideration.

ADMM is applied to solve the problem, which can be proved to converge to the optimal
solution of the relaxed problem.

5x compression and more than 2x speedup is achieved with less accuracy loss.

Flexibility is provided to choose different network architectures by setting different
penalty weights.
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