A Unified Approximation Framework for Compressing and Accelerating Deep Neural Networks

Yuzhe Ma¹, Ran Chen¹, Wei Li¹, Fanhua Shang², Wenjian Yu³, Minsik Cho⁴, Bei Yu¹

¹CUHK, ²Xidian Univ., ³Tsinghua Univ. ⁴IBM T. J. Watson

Introduction

- Deep neural networks keep setting new records;
- More and more difficult tasks;
- ► The change on models?

Virtual Assistant

Recommendation System

Self-driving Cars

Trend on the Models

- Performance is getting better;
- Models are going deeper;
- Size is growing larger;
- Would this be a problem?

¹Alfredo Canziani, Adam Paszke, and Eugenio Culurciello (2016). "An analysis of deep neural network models for practical applications". In: arXiv preprint arXiv:1605.07678.

Challenges

- More applications need to be deployed on end-point devices.
- Smartphones
- Drones
- Cameras

Model Size

Hard to distribute large models through over-the-air update

ICTAI

Energy Efficiency

AlphaGo: 1920 CPUs and 280 GPUs, \$3000 electric bill per game

on mobile: drains battery on data-center: increases TCO

³

³Song Han and William J Dally (2018). "Bandwidth-efficient deep learning". In: *Proc. DAC*, pp□1−6. ⊕ ▶ ∢ ≧ ▶ ∢

Im2col (Image2Column) Convolution

- Transform convolution to matrix multiplication
- Unified calculation for both convolution and fully-connected layers

Property: Sparsity⁴,⁵

Sparse DNN

- Sparsification: weight pruning;
- Compression: compressed sparse format for storage;
- Potential acceleration: sparse matrix multiplication algorithm.

⁵Yihui He, Xiangyu Zhang, and Jian Sun (2017). "Channel Pruning for Accelerating Very Deep Neural Networks". In: *Proc. ICCV*.

⁴Wei Wen et al. (2016). "Learning structured sparsity in deep neural networks". In: *Proc. NIPS*, pp. 2074–2082.

Property: Low-Rank⁶,⁷

Low-rank DNN

- Low-rank approximation: matrix decomposition or tensor decomposition.
- Compression and acceleration: less storage required and less FLOP in computation.

⁶Xiangyu Zhang et al. (2015). "Efficient and accurate approximations of nonlinear convolutional networks". In: *Proc. CVPR*, pp. 1984–1992.

⁷Xiyu Yu et al. (2017). "On compressing deep models by low rank and sparse decomposition". In: *Proc. CVPR*, pp. 7370–7379.

Non-linearity Approximation⁸

ReLU

- Analyze the output error caused by approximation
- Activation unit: ReLU
- Error more sensitive to positive response;
- Enlarge the solution space.

$$\min_{\boldsymbol{W}} \sum_{i=1}^{N} \left\| \boldsymbol{W} \boldsymbol{X}_{i} - \boldsymbol{Y}_{i} \right\|_{F} \rightarrow \min_{\boldsymbol{W}} \sum_{i=1}^{N} \left\| r(\boldsymbol{W} \boldsymbol{X}_{i}) - \boldsymbol{Y}_{i} \right\|_{F}$$

- ➤ X: input feature map
- Y: output feature map

⁸Xiangyu Zhang et al. (2015). "Efficient and accurate approximations of nonlinear convolutional networks". In:

Proc. CVPR, pp. 1984–1992.

Our Idea: Unified Structure

- Simultaneous low-rank approximation and network sparsification;
- Non-linearity is taken into account;
- Acceleration is achieved with structured sparsity;
- Flexibility between two properties.

Formulation

Given a pre-trained network, the goal is to minimize the reconstruction error of the response in each layer after activation using sparse component and low-rank component.

$$\begin{split} \min_{\pmb{A},\pmb{B}} \; & \sum_{i=1}^N \|\pmb{Y}_i - r((\pmb{A} + \pmb{B})\pmb{X}_i)\|_F\,,\\ \text{s.t.} \; & \|\pmb{A}\|_0 \leq S,\\ & \operatorname{rank}(\pmb{B}) \leq L. \end{split}$$

- ➤ X: input feature map
- ➤ Y: output feature map

Not easy to solve: l_0 minimization and rank minimization are both NP-hard.

Relaxation

$$\min_{\boldsymbol{A},\boldsymbol{B}} \sum_{i=1}^{N} \|\boldsymbol{Y}_{i} - r((\boldsymbol{A} + \boldsymbol{B})\boldsymbol{X}_{i})\|_{F}^{2} + \lambda_{1} \|\boldsymbol{A}\|_{2,1} + \lambda_{2} \|\boldsymbol{B}\|_{*}$$

- The l_0 constraint is relaxed by $l_{2,1}$ norm such that the zero elements in \boldsymbol{A} appear column-wise;
- ► The rank constraint on **B** is relaxed by nuclear norm of **B**, which is the sum of the singular values;
- Apply alternating direction method of multipliers (ADMM) to solve it;

Alternating Direction Method of Multipliers (ADMM)

Reformulating the problem with an auxiliary variable M,

$$\min_{\boldsymbol{A},\boldsymbol{B},\boldsymbol{M}} \sum_{i=1}^{N} \|\boldsymbol{Y}_{i} - r(\boldsymbol{M}\boldsymbol{X}_{i})\|_{F}^{2} + \lambda_{1} \|\boldsymbol{A}\|_{2,1} + \lambda_{2} \|\boldsymbol{B}\|_{*},$$
s.t. $\boldsymbol{A} + \boldsymbol{B} = \boldsymbol{M}$.

Then the augmented Lagrangian function is

$$L_{t}(A, B, M, \Lambda)$$

$$= \sum_{i=1}^{N} \|Y_{i} - r(MX_{i})\|_{F}^{2} + \lambda_{1} \|A\|_{2,1} + \lambda_{2} \|B\|_{*} + \langle \Lambda, A + B - M \rangle + \frac{t}{2} \|A + B - M\|_{F}^{2}$$

Alternating Direction Method of Multipliers (ADMM)

Iteratively solve with following rules. All of them can be solved efficiently.

$$\begin{cases} A_{k+1} = \underset{A}{\operatorname{argmin}} \ \lambda_{1} \|A\|_{2,1} + \frac{t}{2} \|A + B_{k} - M_{k} + \frac{\Lambda_{k}}{t} \|_{F}^{2}, \\ B_{k+1} = \underset{B}{\operatorname{argmin}} \ \lambda_{2} \|B\|_{*} + \frac{t}{2} \|B + A_{k+1} - M_{k} + \frac{\Lambda_{k}}{t} \|_{F}^{2}, \\ M_{k+1} = \underset{M}{\operatorname{argmin}} \ \sum_{i=1}^{N} \|Y_{i} - r(MX_{i})\|_{F}^{2} + \langle \Lambda_{k}, A_{k+1} + B_{k+1} - M \rangle + \frac{t}{2} \|A_{k+1} + B_{k+1} - M\|_{F}^{2}, \\ \Lambda_{k+1} = \Lambda_{k} + t(A_{k+1} + B_{k+1} - M_{k+1}). \end{cases}$$

Solving $l_{2,1}$ -norm

$$\min_{\boldsymbol{A}} \lambda_1 \|\boldsymbol{A}\|_{2,1} + \frac{t}{2} \left\| \boldsymbol{A} + \boldsymbol{B}_k - \boldsymbol{M}_k + \frac{\boldsymbol{\Lambda}_k}{t} \right\|_F^2$$

Closed Form Update Rule⁹

$$egin{aligned} m{A}_{k+1} &= ext{prox}_{rac{\lambda_1}{t} \|\cdot\|_{2,1}} (m{M}_k - m{B}_k - rac{m{\Lambda}_k}{t}), \ m{C} &= m{M}_k - m{B}_k - rac{m{\Lambda}_k}{t}, \ [m{A}_{k+1}]_{:,i} &= egin{cases} rac{\|[m{C}]_{:,i}\|_2 - rac{\lambda_1}{t}}{\|[m{C}]_{:,i}\|_2} [m{C}]_{:,i}, & ext{if } \|[m{C}]_{:,i}\|_2 > rac{\lambda_1}{t}; \ 0, & ext{otherwise.} \end{cases} \end{aligned}$$

⁹Guangcan Liu et al. (2013). "Robust recovery of subspace structures by low-rank representation". In: IEEE TPAMI 35 pp. 171-184.

Solving Nuclear-norm

$$\min_{\boldsymbol{B}} \lambda_2 \|\boldsymbol{B}\|_* + \frac{t}{2} \left\| \boldsymbol{B} + \boldsymbol{A}_{k+1} - \boldsymbol{M}_k + \frac{\boldsymbol{\Lambda}_k}{t} \right\|_F^2$$

Closed Form Update Rule¹⁰

$$\begin{split} \boldsymbol{B}_{k+1} &= \operatorname{prox}_{\frac{\lambda_2}{t} \|\cdot\|_*} (\boldsymbol{M}_k - \boldsymbol{A}_{k+1} - \frac{\boldsymbol{\Lambda}_k}{t}), \\ \boldsymbol{D} &= \boldsymbol{M}_k - \boldsymbol{A}_{k+1} - \frac{\boldsymbol{\Lambda}_k}{t}, \\ \boldsymbol{B}_{k+1} &= \boldsymbol{U} \mathcal{D}_{\frac{\lambda_2}{t}}(\boldsymbol{\Sigma}) \boldsymbol{V}, \ \, \text{where} \, \, \mathcal{D}_{\frac{\lambda_2}{t}}(\boldsymbol{\Sigma}) = \operatorname{diag}(\{(\sigma_i - \frac{\lambda_2}{t})_+\}). \end{split}$$

¹⁰ Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen (2010). "A singular value thresholding algorithm for matrix completion". In: SIAM Journal on Optimization (SIOPT) 20.4, pp. 1956–1982.

Solving *M*

$$\min_{\boldsymbol{M}} \sum_{i=1}^{N} \|\boldsymbol{Y}_{i} - r(\boldsymbol{M}\boldsymbol{X}_{i})\|_{F}^{2} + \langle \boldsymbol{\Lambda}_{k}, \boldsymbol{A}_{k+1} + \boldsymbol{B}_{k+1} - \boldsymbol{M} \rangle + \frac{t}{2} \|\boldsymbol{A}_{k+1} + \boldsymbol{B}_{k+1} - \boldsymbol{M}\|_{F}^{2}$$

Gradient-based optimization

- Can be solved using first-order condition, but computing matrix inverse in each iteration is expensive.
- Convex problem. Use SGD to solve it efficiently.
- GPU can accelerate the process.

Comparison on CIFAR-10 dataset

Model	Method	Accuracy ↓	CR	Speed-up
VGG-16	Original	0.00%	1.00	1.00
	ICLR'17 ¹¹	0.06%	2.70	1.80
	Ours	0.40%	4.44	2.20
NIN	Original	0.00%	1.00	1.00
	ICLR'16 ¹²	1.43%	1.54	1.50
	IJCAI'18 ¹³	1.43%	1.45	-
	Ours	0.41%	2.77	1.70

¹³ Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin (2018). "Network Approximation using Tensor Sketching". In: *Proc. IJCAI*, pp. 2319–2325.

¹¹Hao Li et al. (2017). "Pruning filters for efficient convnets". In: *Proc. ICLR*.

¹²Cheng Tai et al. (2016). "Convolutional neural networks with low-rank regularization". In: *Proc. ICLR*.

Linear vs. Non-linear

Comparison of reconstructing linear response and non-linear response: (a) layer conv2-1; (b) layer conv3-1.

Approximation Example

Comparison on ImageNet dataset

Model	Method	Top-5 Accu.↓	CR	Speed-up
AlexNet	Original	0.00%	1.00	1.00
	ICLR'16 ¹⁴	0.37%	5.00	1.82
	ICLR'16 ¹⁵	1.70%	5.46	1.81
	CVPR'18 ¹⁶	1.43%	1.50	-
	Ours	1.27%	5.56	1.10
GoogleNet	Original	0.00%	1.00	1.00
	ICLR'16 ¹¹	0.42%	2.84	1.20
	ICLR'16 ¹²	0.24%	1.28	1.23
	CVPR'18 ²³	0.21%	1.50	-
	Ours	0.00%	2.87	1.35

¹⁴Cheng Tai et al. (2016). "Convolutional neural networks with low-rank regularization". In: *Proc. ICLR*.

¹⁵Yong-Deok Kim et al. (2016). "Compression of deep convolutional neural networks for fast and low power mobile applications". In: *Proc. ICLR*.

ICTAI

¹⁶Ruichi Yu et al. (2018). "NISP: Pruning networks using neuron importance score propagation". In: Proc. CVPR.

Conclusion

- A unified model for compressing the deep neural networks with low-rank approximation and network sparsification, while taking non-linearity into consideration.
- ADMM is applied to solve the problem, which can be proved to converge to the optimal solution of the relaxed problem.
- \blacktriangleright 5× compression and more than 2× speedup is achieved with less accuracy loss.
- ► Flexibility is provided to choose different network architectures by setting different penalty weights.

