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Learning for EDA

» Verification [Yang et.al
TCAD’2018]
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» Mask optimization [Yang et.al DAC’'2018]
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Learning for EDA
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More Considerations

» Existing attempts still rely on regular format of data, like images;
> Netlists and layouts are naturally represented as graphs;
» Few DL solutions for graph-based problems in EDA.
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Test Points Insertion

» Fig. (a): Original circuit with bad testability. Module 1 is unobservable. Module 2 is
uncontrollable;

P> Fig. (b): Insert test points to the circuit;

> (CP1,CP2) =(0,1) — line 1 =0; (CP1,CP2) = (1,1) — line | = 1;

» CP2 = 0 — normal operation mode.
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Problem Overview

Problem

Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.

* (Focus on observation points insertion in this work.)
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Problem Overview
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Problem

Given a netlist, identify where to insert test points, such that:
- Maximize fault coverage;
- Minimize the number of test points and test patterns.

* (Focus on observation points insertion in this work.)

P ltis a binary classification problem from the perspective of DL model;
P A classifier can be trained from the historical data.

» Need to handle graph-structured data.

P Strong scalability is required for realistic designs.



Node Classification

> Represent a netlist as a directed graph. Each node represents a gate.

» Initial node attributes: SCOAP values [Goldstein et. al, DAC’1980].

» Graph convolutional networks: compute node embeddings first, then perform
classification.

Layer 1 Layer 2 FC Layers
Prediction
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Node Classification

Node embedding: two-step operation:

» Neighborhood feature aggregation: weighted sum of the neighborhood features.

gl) =€) +wp x > el + Wy x > i,
uEPR(v) ueSU(v)

P Projection: a non-linear transformation to higher dimension.

eq=0(ga-Wa)

Classification: A series of fully-connected layers.
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Imbalance Issue
» High imbalance ratio: much more negative nodes than positive nodes in a design;
» Poor performance: bias towards majority class;

Solution: multi-stage classification.

» Impose a large weight on positive points.
» Only filter out negative points with high confidence in each stage.
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Efficient Inference

» Neighborhood overlap leads to duplicated computation — poor scalability.

» Transform weighted summation to matrix multiplication.

» Potential issue: adjacency matrix is too large.

» Fact: adjacency matrix is highly sparse! It can be stored using compressed format.
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Efficient Training

» Adjacency matrix cannot be split as conventional way.
» A variant of conventional data-parallel scheme.
- Each GPU process one graph instead of one "chunk";
- Gather all to calculate the gradient.
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Test Point Insertion Flow

» Not every difficult-to-observe node has the same impact for improving the observability;
P Select the observation point locations with largest impact to minimize the total count.

> Impact: The positive prediction reduction in a local neighborhood after inserting an
observation point.

> E.g., the impact of node a in the figure is 4.
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Test Point Insertion Flow
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> lterative prediction and OPs insertion.

» Once an OP is inserted, the netlist would be modified and node attributes would be
re-calculated.

P Sparse representation enables incremental update on adjacency matrix.

» Exit condition: no positive predictions left.

Netlist Prediction |—> s END
Trained GCN 1
Model N
| Impact Evaluation |
4| OP Insertion | C
o




Benchmarks

» Industrial designs under 12nm technology node.

» Each graph contains > 1M nodes and > 2M edges.

Design | #Nodes | #Edges | #POS | #NEG
B1 1384264 | 2102622 | 8894 | 1375370
B2 1456453 | 2182639 | 9755 | 1446698
B3 1416382 | 2137364 | 9043 | 1407338
B4 1397586 | 2124516 | 8978 | 1388608
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Classification Results Comparison

» Baselines: classical learning models with feature engineering in industry;
» GCN outperforms other classical learning algorithms.

| R e SVM == RF s MLP == GCN
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Multi-stage GCN Results

» Scalability: 103 x speedup on inference
time for a design with > 1 million cells.
mmm GCN-S = GON-M —— Recursion —— Ours

» Single-stage GCN vs. Multi-stage GCN ;
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Testability Results Comparison

» Without loss on fault coverage, 11% reduction on test points inserted and 6% reduction
on test pattern count are achieved.

Industrial Tool

GCN-Flow

Desi
eSO 4oPs | #PAs | Coverage | #OPs | #PAs | Coverage
B1 6063 | 1991 99.31% 5801 | 1687 99.31%
B2 6513 | 2009 99.39% 5736 | 2215 99.38%
B3 6063 | 2026 99.29% 4585 | 1845 99.29%
B4 6063 | 2083 99.30% 5896 | 1854 99.31%

Average | 6176 | 2027 99.32% 5505 | 1900 99.32%

Ratio 1.00 1.00 1.00 0.89 | 0.94 1.00
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