
Methodology for Standard Cell Compliance and Detailed
Placement for Triple Patterning Lithography

Bei Yu, Xiaoqing Xu, Jhih-Rong Gao, David Z. Pan
ECE Department, University of Texas at Austin, TX, USA

{bei, xiaoqingxu, jrgao, dpan}@cerc.utexas.edu

ABSTRACT
As the feature size of semiconductor process further scales
to sub-16nm technology node, triple patterning lithography
(TPL) has been regarded one of the most promising lithog-
raphy candidates. M1 and contact layers, which are usually
deployed within standard cells, are most critical and complex
parts for modern digital designs. Traditional design flow that
ignores TPL in early stages may limit the potential to resolve
all the TPL conflicts. In this paper, we propose a coherent
framework, including standard cell compliance and detailed
placement to enable TPL friendly design. Considering TPL
constraints during early design stages, such as standard cell
compliance, improves the layout decomposability. With the
pre-coloring solutions of standard cells, we present a TPL
aware detailed placement, where the layout decomposition
and placement can be resolved simultaneously. Our experi-
mental results show that, with negligible impact on critical
path delay, our framework can resolve the conflicts much more
easily, compared with the traditional physical design flow and
followed layout decomposition.

1. INTRODUCTION
As the feature size of semiconductor process technology

nodes further scales to sub-16nm, triple patterning lithogra-
phy (TPL) is regarded as one of the most promising lithogra-
phy candidates, along with extreme ultra-violet lithography
(EUVL), directed self-assembly (DSA), and electron beam
lithography (EBL) [1, 2]. TPL is a natural extension along
the paradigm of double patterning lithography (DPL), which
has been pushed to its limit in sub-16nm, to introduce better
printability [3].

To deploy TPL process, layout decomposition is usually
applied to divide the initial layout into three masks. Then
each mask is implemented through one exposure-etch pro-
cess, through which the layout can be produced. In initial
layout, two features with distance less than minimum col-
oring distance dmin should be assigned into different masks.
One conflict occurs when two features whose spacing is less
than dmin. Sometimes the conflict can be also resolved by
inserting stitch to split a feature into two touching parts.

TPL layout decomposition problem with conflict and stitch
minimization has been well studied in the past few years
[4–11]. However, most existing work suffers from one or more
of the following drawbacks. (1) Because TPL layout decom-
position problem is NP-hard [6], most of the decomposers are
based on approximation or heuristic methods, thus some ex-
tra conflicts may be reported [8]. (2) For each design, since
the library only contains fixed number of standard cells, lay-
out decomposition would contain lots of redundant works.
For example, if one cell is applied hundreds of times in a sin-
gle design, it would be decomposed hundreds of times during
layout decomposition. (3) Successfully carrying out these de-
composition techniques requires the input layouts to be TPL-

(a) (b)

Figure 1: Native conflicts from (a) contact layer
within a standard cell; (b) M1 layer between adja-
cent standard cells.

friendly. However, since all these decomposition techniques
are applied at post-place/route stage, where all the design
patterns are already fixed, they lack the abilities to resolve
some native TPL conflict patterns, e.g., four-clique conflicts.

It is observed that the most hard-to-decompose patterns
originate from contact and M1 layers. Fig. 1 shows two
common native TPL conflicts in contact layer and M1 layer,
respectively. As shown in Fig. 1(a), contact layout within the
standard cell may generate some 4-clique patterns, which is
indecomposable. Meanwhile, if placement techniques are not
TPL friendly, some boundary metals may introduce native
conflicts (see Fig. 1(b)). Since redesigning indecomposable
patterns in the final layout requires high ECO efforts, gen-
erating TPL-friendly layouts, especially in the early design
stage, becomes urgent and pivotal. Through these two ex-
amples, we can see that both TPL aware standard library
design and TPL aware placement are necessary to avoid such
indecomposable patterns in final layout.

Liebmann et al. in [12] proposed some guidelines to enable
DPL friendly standard cell design and placement. Besides,
there exist several placement studies toward different manu-
facturing process targets [13–15]. Recently [16, 17] proposed
TPL aware detailed routing schemes. However, to our best
knowledge, no previous work has addressed TPL compliance
at standard cell or placement level.

In this paper, we present a systematic framework to seam-
lessly integrate TPL constraints in early design stages, com-
prehending standard cell conflict removal, standard cell pre-
coloring and detailed placement together. Note that our
framework is layout decomposition free, that is, the TPL
aware detailed placement can generate optimized positions
and color assignment solutions for all cells. Our main contri-
butions are summarized as follows:

• We propose systematic standard cell compliance tech-
niques for TPL and coloring solution generation.

• We study the standard cell pre-coloring problem, and
propose effective methods.

• We present the first systematic study for the TPL aware
ordered single row placement, where cell placement and

𝑑𝑟𝑜𝑤 = 4 ∗ 𝑤𝑚𝑖𝑛 + 2 ∗ 𝑠𝑚𝑖𝑛

𝑑𝑚𝑖𝑛 = 2 ∗ 𝑤𝑚𝑖𝑛 + 3 ∗ 𝑠𝑚𝑖𝑛

𝑑𝑟𝑜𝑤

(a)

𝑑𝑚𝑖𝑛

(b)

2 ∗ 𝑤𝑚𝑖𝑛 > 𝑠𝑚𝑖𝑛 ↔ 𝑑𝑟𝑜𝑤 > 𝑑𝑚𝑖𝑛

Figure 2: (a) Minimum spacing between M1 wires
among different rows. (b) Minimum spacing between
M1 wires with the same color.

color assignment can be solved simultaneously.

• Our framework seamlessly integrate decomposition in
each key step, therefore no additional layout decompo-
sition is required.

• Experimental results show that our framework can achieve
zero conflict, meanwhile can effectively reduce the stitch
number.

The rest of the paper is organized as follows: Section 2
provides preliminaries and overview of our methodologies.
Section 3 proposes standard cell modification to enable TPL
friendly cell layout, with negligible timing impact. In Section
4 the pre-coloring techniques for each cell are proposed, fol-
lowed by look-up table construction. Section 5 and Section
6 give details on our TPL aware detailed placement. Section
7 presents the experiment results, followed by conclusion in
Section 8.

2. PRELIMINARIES

2.1 Row Structure Layout
Our framework assumes a row-structure layout, where cells

in each row are with the same height, and power/ground rails
are going from the very left to the very right (see Fig. 2(a)).
Similar assumption was applied in row based TPL layout de-
composition [8] as well. The minimum width of metal feature
and the minimum spacing between neighboring metal features
are denoted as wmin and smin, respectively. Besides, we de-
fine the minimum spacing between metal features among dif-
ferent rows to be drow. If we further analyze layout patterns
in the library, it can be observed the width of power/ground
rail is twice the width of metal wire within standard cells [18].
Under the row structure layout, we have the following lemma.

Lemma 1. There is no coloring conflict between two M1
wires or contacts that are from different rows.

Proof. For TPL, the layout will be decomposed into three
masks, which means layout features within minimum coloring
distance will be assigned three colors to increase the pitch
between neighboring features. Then, we can see from the
Fig. 2, the minimum spacing between M1 features with the
same color in TPL is dmin = 2 · wmin + 3 · smin. We assume
the worst case for drow, which means the standard cell rows
are placed as mirrored cells and allow for no routing channel.
Thus, drow = 4·wmin+2·smin. We should have drow > dmin,

which equals 2 · wmin > smin. This condition can easily be
satisfied for M1 layer. For the same reason, we can achieve
similar conclusion for the contact layer.

Based on the row-structure assumption, the whole layout
can be divided into rows, and layout decomposition or col-
oring assignment can be carried out for each row. Without
loss of generality, for each row the power/ground rails are
assigned the color 1 (default color). Then the decomposed
results for each row will not induce coloring conflicts among
different rows. In other words, the coloring assignment re-
sults for each row can be merged together, without losing
optimality.

2.2 Overall Design Flow

Methodology for Std-Cell Compliance

TPL aware Detailed Placement

Decomposed Placement

Std-Cell Library
1. Std-Cell Conflict Removal

2. Std-Cell Analysis

3. Std-Cell Pre-Coloring

4. Look-Up Table Construction

Global Moving

Placement and Color Assignment
Co-optimizationInitial Placement

Figure 3: Overall flow of the methodologies for stan-
dard cell compliance and detailed placement.

The overall flow of our proposed framework is illustrated
in Fig. 3. It consists of two stages: methodologies for stan-
dard cell compliance, and TPL aware detailed placement.
The standard cell compliance techniques include standard cell
conflict removal, timing analysis, standard cell pre-coloring,
and lookup table generation. The standard cell compliance
techniques ensure that, for each cell, TPL friendly cell layout
and a set of pre-coloring solutions will be provided.

Note that since triple patterning lithography constraints
are seamlessly integrated into our coherent design flow, we do
not need a separate additional step of layout decomposition.
In other words, the output of our framework is decomposed
layouts that have resolved cell placement and color assign-
ment simultaneously.

3. STANDARD CELL COMPLIANCE
It is observed that without considering TPL in standard cell

design, the cell library may involve several cells with native
TPL conflict (see Fig. 1 (a) for one example). The inner
native TPL conflict cannot be resolved through either cell
shift or layout decomposition. Since one cell may be applied
many times in one single design, such inner native conflict
may cause hundreds of coloring conflicts in final layout. To
achieve TPL friendly layout after the physical design flow,
we should first ensure the standard cell layout compliance
for TPL. Specifically, we will manually remove all 4-clique
conflicts through standard cell modification. Then, parasitic
extraction and SPICE simulation are applied to analyze the
timing impact for the cell modification.

(a)

(b)

Figure 4: Contact layout modification to hexagonal
packing. (a) The principle for contact shifting; (b)
Demonstration of two options for contact shifting,
with original layout in the middle, case 1 on the left
and case 2 on the right.

I N V _ X 1 I N V _ X 2 A N D 2 _ X 1 N A N D 2 _ X 1 O R _ X 1 N O R 2 _ X 1
- 2

- 1

0

1

2

De
lay

 de
gra

da
tio

n (
%) c a s e 1

 c a s e 2

Figure 5: The timing impact from layout modifica-
tion for different types of gates, including case 1 and
case 2

3.1 Native TPL Conflict Removal
An example of native TPL conflict is illustrated in Fig.

4, where four contacts introduce an indecomposable 4-clique
conflict structure. For such cases we modify the contact lay-
out into hexagonal close packing [3], which also allows for the
most aggressive cell area shrinkage for TPL friendly layout.
Note that after modification, the layout still needs to satisfy
the design rules. From the layout analysis of different cells,
we have various ways to remove such 4-clique conflict. As
shown in Fig. 4, with slight modification to original layout,
we can either choose to move contacts connected with power
or ground rails or shift contacts on the signal paths of the
cell. We call these two options case 1 and case 2 respectively,
both of which will lead to TPL friendly standard cell layout.

Generally, the cell layout design flexibility is beneficial for
resolving conflicts between cells when they are placed next
to each other. However, from a circuit designer’s perspec-
tive, we want to achieve little timing variation among various
layout styles of a single cell. Therefore, we need simulation
results to demonstrate negligible timing impact from layout
modification.

3.2 Timing Characterization
A Nangate 45nm Open Cell Library [18] has been scaled to

16nm technology node. After native TPL conflict detection
and layout modification, we carry out the standard cell level

timing analysis. Calibre xRC [19] is used to extract para-
sitic information of the cell layout. For each cell, we have
original and modified layout with case 1 and case 2 options.
From extraction results, we can see that the source/drain
parasitic resistance of transistors varies with the position of
contacts, which is the direct impact from layout modification.
We use SPICE simulation to characterize different types of
gates, which is based on 16nm PTM model [20]. Then, we can
get the propagation delay of each gate, which is the average
of rising and falling delay. We pick up six most commonly
used cells to measure the relative changes of propagation de-
lay due to layout modification (see Fig. 5). It is clearly
observed that, for both case 1 and case 2, the timing impact
will be within 0.5% of the original propagation delay of gates,
which is assumed to be insignificant timing variation. Based
on case 1 or case 2 option, we will remove all conflicts among
cells of the library with negligible timing impact. Then we
can ensure the standard cell compliance for triple patterning
lithography.

4. STANDARD CELL PRE-COLORING
For each type of standard cell, after removing the native

TPL conflicts, we provide one set of pre-coloring solutions,
which can be prepared as a supplement to the library. In this
section we introduce the pre-coloring problem, and propose
general algorithms to solve it.

4.1 Problem Formulation
At first glance, standard cell pre-coloring is similar to cell

level layout decomposition. However, different from the tra-
ditional layout decomposition, pre-coloring could have more
than one solution for each cell. It is observed that for some
complex cell structure, if we exhaustively enumerate the pos-
sible coloring, it would have thousands of solutions. Large
solution size would impact the performance of our whole flow
(see analysis in Section 5). To provide high quality pre-
coloring solutions, meanwhile keep the solution size as small
as possible, we define immune feature and redundant coloring
solutions as follows.

Definition 1 (Immune feature). In one standard cell, an
inside feature that would not conflict with any outside feature
is defined as an immune feature.

It is easy to see that for one feature, if its distances to both
vertical boundaries are larger than dmin, its color would not
conflict with any other cells. Then this feature is an immune
feature.

Definition 2 (Redundant coloring solutions). If two col-
oring solutions are only different at the immune features,
these two solutions are redundant to each other.

Problem 1 (Standard Cell Pre-Coloring). Given the in-
put standard cell layout, and the maximum allowed stitch
number maxS, we seek to search all coloring results that with
stitch number no more than maxS. Meanwhile, all redundant
coloring solutions should be removed.

For example, given an AND2X1 cell as shown in Fig. 6(a),
if maxS is set as 1, the pre-coloring problem would search
eight solutions (4 solutions with 0 stitch and 4 solutions with
1 stitch, see Fig. 7).

Given the input standard cell layout, all the stitch candi-
dates are captured through wire projection [6] [8]. An exam-
ple of AND2X1 cell is illustrated in Fig. 6 (a), where five

Stitch Candidate

Boundary Wire

(a) (b) (c)

Figure 6: Constraint graph construction and sim-
plification. (a) Input layout and all stitch candidates.
(b) Constraint graph (CG) where solid edges are con-
flict edges and dash edges are stitch edges. (c) The
simplified constraint graph (SCG) after removing im-
mune features.

(a) (b)

Figure 7: AND2X1 pre-coloring solutions with (a) 0
stitch; (b) 1 stitch.

stitch candidates are captured for M1 layer. Note that we
forbid stitch on small features, e.g., contact, due to printabil-
ity issue. In addition, different from previous stitch candidate
generation, we forbid the stitch on boundary metal wires (see
the red boxes in Fig. 6 (a)). The reason is based on the obser-
vation that boundary stitches tend to cause indecomposable
patterns between two cells. Then an undirected constraint
graph (CG) [6] is constructed to represent all input features
and all the stitch candidates. One feature in the layout is
divided into two vertices in the graph if one stitch candidate
is introduced. The CG contains two sets of edges, i.e., the
conflict edges and the stitch edges, respectively. Fig. 6 (b)
shows the corresponding CG.

4.2 SCG Solution Enumeration
Since in CG some vertices represent the immune features,

to avoid redundant coloring solutions, these features are tem-
porarily removed. We denote the remained graph as simpli-
fied constraint graph (SCG). A backtracking algorithm [21] is
proposed to the simplified CG to enumerate all possible col-
oring solutions. For example, given the SCG shown in Fig.
6(c), there are 24 solutions. It should be mentioned that since
all power/ground rails are assigned default color, the colors
of corresponding vertices are assigned before the backtracking
process.

4.3 CG Solution Verification
Until now we have enumerated all coloring solutions for

simplified constraint graph (SCG). However, under the max-
imum stitch number maxS constraint, not all the SCG so-
lutions can achieve legal layout decomposition in initial con-
straint graph (CG). Therefore, CG solution verification is pro-
posed to each generated solution. Since SCG is a sub-set of
CG, the verification can be viewed as layout decomposition
with pre-colored features on SCG. If a coloring solution for
whole CG can be found with stitch number less than maxS,

it would be stored as one pre-coloring solution.

Algorithm 1 CG Solution Verification

Input: set of initial coloring solutions S′ for SCG;
1: Generate corresponding coloring solutions S for CG;
2: for each coloring solution si ∈ S do
3: minCost←∞;
4: BRANCH-AND-BOUND(0, si);
5: if minCost < maxS then
6: Output si as legal pre-coloring solution;
7: end if
8: end for

9: function BRANCH-AND-BOUND(t, si)
10: if t ≥ size[si] then
11: if GET-COST() < minCost then
12: minCost← GET-COST();
13: end if
14: else if LOWER-BOUND() > minCost then
15: Return;
16: else if si[t] 6= −1 then
17: BRANCH-AND-BOUND(t+ 1, si);
18: else . si[t] = −1
19: for each available color c do;
20: si[t]← c;
21: BRANCH-AND-BOUND(t+ 1, si);
22: si[t]← −1;
23: end for
24: end if
25: end function

As shown in Algorithm 1, the CG solution verification is
based on branch and bound [21]. Given the coloring solutions
S′ = {s′1, s′2 . . . s′n} for SCG, at the beginning the correspond-
ing coloring solutions S = {s1, s2, . . . , sn} for CG are gener-
ated (line 1). Then we iteratively check each coloring solution
si (lines 2−6). For one coloring solution si, if vertex t belongs
to SCG, si[t] should be already assigned one legal color. If t
does not belong to SCG, si[t] ← −1. The BRANCH-AND-
BOUND() algorithm traverses the decision tree with a depth
first search (DFS) methods (lines 7 − 19). For each vertex
t, if si[t] has been assigned one legal color in SCG, we skip
t and travel to the next vertex. Otherwise, every legal color
would be assigned to t before traveling to the next vertex.
Different from exhaustive search, search space can be effec-
tively reduced through pruning process (lines 11 − 12). The
function LOWER-BOUND() is to get lower bound by cal-
culating current stitch number. Note that if one conflict is
found, then the function returns a large value. Before check-
ing any legal color of vertex t, we calculate its lower bound
first. If LOWER-BOUND() is larger than minCost, we shall
not branch from t, since all the children solutions will be of
higher cost than minCost. Through the travel, all vertices
have been assigned legal colors, stored in si. After the travel,
if minCost ≤ maxS, then si is one of the pre-coloring solu-
tions (lines 5− 6).

It shall be noted that although other optimal layout decom-
position techniques, like integer linear programming (ILP),
may be modified as the verification engine, our branch and
bound based method is easy to implement and effective for
standard cell level problem size. Even for the most complex
cell, SCG solution enumeration and CG solution verification
can be finished in 5 seconds.

4.4 Look-Up Table Construction

(a)

(b)

Figure 8: Two techniques for removing conflicts dur-
ing placement. (a) Flip the cell; (b) Shift the cell.

For each cell ci in the library, we have generated a set
of pre-coloring solutions Si = {si1, si2, . . . , siv}. We further
pre-compute the decomposability of each cell pair, and store
them in a lookup table. For example, if two cells ci, cj are
assigned with p−th and q−th coloring solutions, respectively,
then LUT(i, p, j, q) would store the minimum distance re-
quired when ci is to the left of cj . That is, if two colored
cells can be legally abutted to each other, the corresponding
value would be 0. Otherwise, the value would be the distance
required to keep two cells decomposable. Meanwhile, for each
cell, its stitch number in different coloring solutions are also
stored. It shall be noted that during the Lookup table con-
struction, the cell flipping is considered, and related values
are stored as well.

5. TPL AWARE SINGLE ROW PLACEMENT
In this section we solve a single row placement, where the

orders of all cells on the row are determined. When TPL
process is not considered, this row based design problem is
called Ordered Single Row (OSR) problem, which has been
well studied [22–24]. Here we revisit the OSR problem with
the TPL process consideration.

5.1 Problem Formulation
To formalize the OSR problem under TPL process, we in-

troduce the following notations. We consider an input single
row as m ordered sites R = {r1, r2, . . . , rm}, and an input n
movable cells C = {c1, c2, . . . , cn} whose order is determined.
That is, ci is to the left of cj , if i < j. Each cell ci has vi dif-
ferent coloring solutions. A cell-color pair (i, p) denotes that
cell ci is assigned to the p−th color solution, where p ∈ [1, vi].
Meanwhile, s(i, p) gives the corresponding stitch number for
(i, p). The horizontal position of cell ci is given by x(ci), and
the cell width is given by w(ci). All the cells in other rows are
with fixed positions. A single row placement is legal if and
only if any two cells ci, cj meets the following non-overlap
constraint:

x(ci) + w(ci) + LUT(i, p, j, q) ≤ x(cj), if (i, p)&(j, q)

where LUT(i, p, j, q) is corresponding LUT value mentioned
in Section 4.4. Based on all these notations, we define the
TPL aware Ordered Single Row (TPL-OSR) problem as fol-
lows.

Problem 2 (TPL aware Ordered Single Row Problem).
Given a single row placement, we seek a legal placement and
cell color assignment, so that the half-perimeter wire-length
(HPWL) of all nets and the total stitch number are mini-
mized.

Compared with traditional OSR problem, TPL-OSR prob-
lem faces two special challenges: (1) TPL-OSR not only needs
to solve cell placement, but also needs to assign appropriate
coloring solutions for cells to minimize the stitch number.
In other words, cell placement and color assignment should
be solved simultaneously. (2) In conventional OSR problem,
if the sum of all cell width is less than row capacity, it is
guaranteed that there would be one legal placement solution.
However, for TPL-OSR problem, since some extra sites may
be spared to resolve coloring conflicts, before coloring assign-
ment we cannot calculate the required site number.

In addition, it shall be noted that compared with conven-
tional color assignment problem, in TPL-OSR the solution
space is much larger. That is, to resolve the coloring conflict
between two abutted cells ci, cj , apart from picking up com-
patible coloring solutions, TPL-OSR can seek to flip cells (see
Fig. 8 (a)) or shift cells (see Fig. 8 (b)).

5.2 Graph Model for TPL-OSR
In this subsection we propose a graph model that correctly

captures the cost of HPWL and the stitch number. Further-
more, we will show that performing a shortest path algorithm
on the graph model can optimally solve the TPL-OSR prob-
lem.

To consider cell placement and cell color assignment si-
multaneously, a directed acyclic graph G = (V,E) is con-
structed. The graph G is with vertex set V and edge set
E. V = {{0, . . . ,m} × {0, . . . , N}, t}, where N =

∑n
i=1 vi.

The vertex in the first row and the first column is defined
as vertex s. We can see that each column corresponds to
one site’s start point, and each row is related to one specified
color assignment of one cell. Without loss of generality, we
label each row as r(i, p) if it is related to cell ci with p−th
coloring solution. The edge set E is composed of three sets
of edges: horizontal edges Eh, ending edges Ee, and diagonal
edges Ed.

Eh ={(i, j − 1)→ (i, j)|0 ≤ i ≤ N, 1 ≤ j ≤ m}
Ee ={(i,m)→ t|i ∈ [1, N]}
Ed ={(r(i− 1, p), k)→ (r(i, q), k + w(ci)+

LUT (i− 1, p, i, q))|i ∈ [2, n], p ∈ [1, vi−1], q ∈ [1, vi]}

We denote each edge by its start and end point. A legal TPL-
OSR solution corresponds to finding a directed path from the
vertex s to vertex t. Sometimes one row cannot insert all
the cells, therefore ending edges are introduced. With these
ending edges, the graph model can guarantee to find out one
path from s to t.

To simultaneously minimize the HPWL and stitch number,
we define the cost on edges as follows. (1) All horizontal edges
are with zero cost. (2) For ending edge {(r(i, p),m) → t},
it is labelled by the cost (n − i) · M , where M is a large
number. (3) For diagonal edge {(r(i, p), k) → (r(j, q), k +
w(cj) + LUT (i, p, j, q))}, it is labelled by the cost as follows:

∆WL+ α · s(i, p) + α · s(j, q)

where ∆WL is the HPWL increment of placing cj in position
q − LUT(i, p, j, q). Here α is a user-defined parameter for
assigning relative importance between the HPWL and the

(1,1)-0 (2,1)-0

(1,1)-0 (2,2)-1

(1,2)-1 (2,1)-0

(1,2)-1 (2,2)-1

1

2

3

4
pin 1 pin 2

(a)

0 1

(1,1)

(1,2)

(2,1)

2 3 4 5

(2,2)

t

s

(b)

0 1

(1,1)

(1,2)

(2,1)

2 3 4 5

(2,2)

t

s

(c)

0 1

(1,1)

(1,2)

(2,1)

2 3 4 5

(2,2)

t

s

(d)

Figure 10: Example for the TPL-OSR problem. (a) two cells with different coloring solutions to be placed into
a 5 sites row; Graph models with diagonal edges (b) from s vertex to first cell; (c) from c1 1 to second cell; (d)
from c1 2 to second cell.

(1, 1)

(1, 2)

(n, 2)

(n, vn)

t

s 1 2 3 4 m � 1 m

(1, v1)

(2, 1)
(2, 2)

(2, v2)

(n, 1)

Figure 9: Graph model for the TPL-OSR prob-
lem (only the horizontal edges and ending edges are
showed).

0 1

(1,1)

(1,2)

(2,1)

2 3 4 5

(2,2)

t

s

(2,2)-1(1,1)-0pin 1 pin 2

(a)

0 1

(1,1)

(1,2)

(2,1)

2 3 4 5

(2,2)

t

s

(2,1)-0(1,1)-0pin 1 pin 2

(b)

Figure 11: Shortest path solutions on the graph
model with (a) 1 stitch; (b) 0 stitch.

stitch number. In our framework, α is set as 10. The general
structure of G is shown in Fig. 9. Note that for clarity here
we do not show the diagonal edges.

One example of the graph model is illustrated in Fig. 10,
where two cells c1 and c2 are to placed in a row with 5 sites.
Each cell has two different coloring solutions, and correspond-
ing required stitch number. For example, the label (2,1)-0
means c2 is assigned to the first coloring solution, with no
stitch. The graph model is shown in Fig. 10(b)(c)(d), where
each figure shows different part of diagonal edges. Cells c1 and
c2 are connected with pin 1 and pin 2, respectively. There-
fore, c1 tends to be on the left side of row, while c2 tends to
be on the right side. Fig. 11 gives two shortest path solu-
tions with the same HPWL. Because the second one is with
less stitch number, it would be selected as the solution for
TPL-OSR problem.

Since G is a directed acyclic graph, the shortest path can be
calculated using topological traversal of G in O(mnK) steps,

where K is the maximal pre-coloring solution number for each
cell. To apply topological traversal, a dynamic programming
algorithm is proposed to find the shortest path from the s
vertex to the t vertex.

5.3 Two Stage Speedup

(1,1) (2,1)

t

(2,2)

s

(1,2)

0

1

0

0

1

1

0

0

(a)

(1,1) (2,1)

t

(2,2)

s

(1,2)

0

1

0

0

1

1

0

0

(b)

Figure 12: First stage model to solve color assign-
ment. In this example edge cost only considers the
stitch number minimization.

Although the shortest path algorithm can be solved in
O(mnK), for practical design when each cell could allow
many pre-coloring solutions, the proposed graph model may
still suffer from long runtime penalty. To achieve a better
trade-off between runtime and performance, here we propose
a two-stage speedup technique. The main idea is that the
whole previous graph model is decomposed into two smaller
graph models, one for color assignment, and another for cell
placement.

To solve the example in Fig. 10, the first stage graph model
is illustrated in Fig. 12 (a), where the cost of each edge
corresponds to the stitch number required for each cell-color
pair (i, p). Note that in our framework, relative positions
among cells are also considered in the edge cost. A shortest
path on the graph corresponds to a color assignment with
minimum stitch number.

Our second stage is for cell placement, and the previous
color assignment solutions are considered here. That is, if in
previous color assignment cells ci−1 and ci are assigned its
p−th and q−th coloring solutions, then the width of cell ci
is changed from w(ci) to w(ci) + LUT(i − 1, p, i, q). By this
way, the extra site to resolve coloring conflicts are prepared
for cell placement. Based on the updated cell widths, the
graph model in [24] can be directly applied here.

The first graph model can be solved in O(nK), while the
second graph model can be resolved in O(mn). Therefore,
although the speedup technique can not achieve optimal so-
lution of TPL-OSR problem, applying the two-stage graph
model can reduce the complexity from O(mnK) to O(nK +
mn).

Algorithm 2 TPL aware Detailed Placement

Input: cells to be placed;
1: repeat
2: Sort all rows;
3: Label all rows as FREE;
4: for each row rowi do
5: Solve TPL-OSR prolbem for rowi;
6: if exist unsolved cells then
7: Global Moving;
8: Update cell widths considering assigned colors;
9: Solve cell placement (OSR) for rowi;

10: end if
11: Label rowi as BUSY ;
12: end for
13: until no significant improvement

6. OVERALL PLACEMENT SCHEME
In this section we present our overall scheme for the TPL

aware detailed placement.
The flow of our detailed placement algorithm is summa-

rized in Algorithm 2. In each main loop, rows are sorted that
the row with more cells occupied would be solved earlier. At
the beginning, all rows are labeled as FREE, which means it
can be inserted additional cells (line 3). For each row rowi,
we propose TPL-OSR algorithm as introduced in Section 5
to solve color assignment and cell placement simultaneously.
Note that sometimes TPL-OSR cannot guarantee to assign all
cells into row, due to extra sites required to resolve coloring
conflicts.

If TPL-OSR ends with unsolved cells, Global Moving is
applied to move some cells to other rows (line 7). The basic
idea behind the Global Moving is to find the “optimal row and
site” for a cell in the placement region, and remove some local
triple patterning conflicts. For each cell we define its “optimal
region” as the site to place where the HPWL is optimal [25].
Note that one cell can be only moved to FREE rows. Since
some cells in the middle of row may be moved, we need to
solve OSR problem to rearrange the cell positions [24]. Note
that since all cells on the row have been assigned colors, cell
widths should be updated to preserve extra space for coloring
conflict (line 8 − 9) . After solving one rowi, it is labeled as
BUSY (line 10).

Since the rows are placed and colored one by one sequen-
tially, the solution obtained within one single row may not be
good enough, Therefore, our scheme is able to repeatedly call
the main loop, until no significant improvement is achieved.

7. EXPERIMENTAL RESULTS
We implement our standard cell pre-coloring and TPL aware

detailed placement in C++, and all the experiments are per-
formed on a Linux machine with 3.0GHz CPU. We use Design
Compiler [26] to synthesize OpenSPARC T1 designs based on
Nangate 45nm standard cell library [18]. During benchmark
generation, all the library and benchmark are scaled down
to 16nm technology node. For each benchmark, we perform
placement with Cadence SOC Encounter [27] to generate ini-
tial placement result. To better compare the performance
of detailed placement under different placement densities, for
each circuit, we choose three different core utilization rates
0.7, 0.8, and 0.9.

We compare four different design flows for M1 layer of all
the benchmarks. “Post-Decomposition” means the con-
ventional TPL design flow, where Encounter is chosen as the

placer and an academic decomposer [7] is applied for layout
decomposition. Note here the standard cell inner native con-
flicts have been removed through our compliance techniques
(see Section 3). We implement the greedy based detailed
placement algorithm in [15], denoted as “GREEDY”. Al-
though the work in [15] is for the self-aligned double pat-
terning (SADP) friendly design, the proposed detailed place-
ment algorithm can be integrated into our framework as well.
“TPLPlacer” and “TPLPlacer-SPD” are the proposed
detailed placement, where the “TPLPlacer” applies the op-
timal graph model to solve cell placement and color assign-
ment simultaneously, while the “TPLPlacer-SPD” uses fast
two-stages graph models to solve color assignment and cell
placement iteratively.

All the experimental results are listed in Table 1, where
columns “CN#” and “ST#” are the conflict number and the
stitch number on the final decomposed layout, respectively.
Column “WLD” shows the total wire length difference be-
tween initial placement and our TPL aware placement, and
column “CPU(s)” gives the runtime. First, from the table
we can see that under the conventional design flow, which is
placement + layout decomposition, even each standard cell
itself is TPL-friendly, averagely 1,700 conflicts are reported
in final decomposed layout. Second, we can see that although
for some cases GREEDY can achieve 0 conflict results, in 10
out of 21 cases it cannot find out legal placement results. For
those illegal results labels “N/A” are reported. The main
reason is that GREEDY only shifts the cells toward right di-
rection. For some benchmark with high cell utilization, it may
cause the final placement violation. In addition, GREEDY
uses a greedy method to assign cell color, thus it loses the
global view to minimize the stitch number. Therefore, more
stitches are reported for those cases where it finds out legal
results.

We further compare our two detailed placement strategies,
TPLPlacer, and TPLPlacer-SPD. From Table 1 we can see
that TPLPlacer can achiever slightly better HPWL (0.22%).
However, TPLPlacer-SPD can achieve 14x speedup and less
stitch number (5% less). The speedup is due to the faster two-
stage graph model, instead of combined graph model. The
main reason for the less stitch number is that the TPLPlacer-
SPD solves color assignment first, followed by cell placement.
Although cell position is integrated into the color assignment
model, the shortest path with less number of stitches tends to
be selected. The results in Table 1 demonstrate the effective-
ness of our standard cell compliance and detailed placement
techniques.

8. CONCLUSION
In this paper we propose a coherent framework to seam-

lessly integrate the TPL aware optimizations into early de-
sign stages. To our best knowledge, this is the first work for
TPL compliance at both standard cell and placement levels.
An optimal graph model to simultaneously solve cell place-
ment and color assignment is proposed, and then a two-stage
graph model is presented to achieve speedup. Our framework
is compared with traditional layout decomposition. The re-
sults show that considering TPL constraints in early design
stages can dramatically reduce the conflict number and stitch
number in final layout. As continuing growth of technology
node to sub-16 nm, TPL turns out to be a definitely promis-
ing lithography solution. A dedicated design flow that inte-
grating TPL constraints is necessary to assist in the whole
process. We believe this paper will stimulate more research
on TPL and TPL aware design.

Table 1: Comparisons of Detailed Placement Algorithms
bench Post-Decomposition GREEDY [15] TPLPlacer TPLPlacer-SPD

CN# ST# CPU(s) CN# ST# WLD CPU(s) CN# ST# WLD CPU(s) CN# ST# WLD CPU(s)

alu-70 605 4092 0.7 0 1254 +0.06% 2.0 0 1013 -0.94% 107.2 0 994 -0.77% 4.2

alu-80 656 4100 0.6 N/A N/A N/A N/A 0 1011 -1.70% 114.8 0 994 -1.48% 4.6

alu-90 596 3585 0.5 N/A N/A N/A N/A 0 1006 -2.38% 120.2 0 994 -2.2% 4.8

byp-70 1683 9943 2.4 0 3254 0.14 0.97 0 2743 -5.98% 382.5 0 2545 -5.69% 9.2

byp-80 1918 10316 2.6 N/A N/A N/A N/A 0 2889 -2.58% 343.0 0 2545 -2.12% 7.9

byp-90 2285 10790 3.0 N/A N/A N/A N/A 0 3136 +1.74% 361.9 0 2514 +4.31% 7.1

div-70 1329 6017 2.2 0 2368 +0.08% 1.89 0 2119 -3.84% 117.6 0 2017 -3.28% 5.6

div-80 1365 5965 2.1 0 2379 +0.08% 1.87 0 2090 -2.06% 135.6 0 2017 -1.63% 6.1

div-90 1345 5536 2.1 0 2365 +0.02% 1.87 0 2080 -4.79% 155.2 0 2017 -4.37% 6.4

ecc-70 206 3852 0.9 N/A N/A N/A N/A 0 247 -4.76% 69.4 0 228 -4.6% 1.7

ecc-80 265 3366 1.0 0 433 +0.43% 0.44 0 274 -2.51% 58.2 0 228 -2.19% 1.5

ecc-90 370 4015 1.1 N/A N/A N/A N/A 0 369 -1.28% 68.5 0 228 -1.53% 1.4

efc-70 503 3333 0.7 0 1131 +0.0 % 5.46 0 1005 -1.32% 32.4 0 1005 -1.31% 6.2

efc-80 570 4361 0.6 N/A N/A N/A N/A 0 1008 -3.35% 37.7 0 1005 -3.26% 6.3

efc-90 534 4040 0.8 0 1133 +0.0 % 5.4 0 1005 +0.35% 39.0 0 1005 +0.35% 6.3

ctl-70 425 2583 1.3 0 703 +0.23% 3.8 0 573 -1.75% 67.3 0 553 -1.56% 5.3

ctl-80 529 3332 1.4 0 714 +0.5 % 3.8 0 561 -2.26% 78.8 0 553 -2.04% 5.5

ctl-90 519 3241 1.5 0 726 +0.4 % 3.8 0 556 -0.63% 85.4 0 553 -0.5% 5.6

top-70 5893 27981 9 N/A N/A N/A N/A 0 8069 -10.6% 1948.0 0 8034 -10.4% 43.5

top-80 6775 32352 10.3 N/A N/A N/A N/A 0 8120 -5.45% 1696.7 0 8015 -4.9% 36.8

top-90 7313 29343 11.4 N/A N/A N/A N/A 0 8710 -4.41% 1850.9 0 7876 +2.09% 32.7

Average 1700 8664 2.68 N/A N/A N/A N/A 0 2314 -2.88% 142.9 0 2186 -2.24% 9.94

Ratio 1.0 1.0 0.95 0.07

9. ACKNOWLEDGMENT
This work is supported in part by NSF grants CCF-0644316

and CCF-1218906, SRC task 2414.001, NSFC grant 61128010,
and IBM Scholarship.

10. REFERENCES
[1] ITRS. [Online]. Available: http://www.itrs.net

[2] B. Yu, J.-R. Gao, D. Ding, Y. Ban, J.-S. Yang, K. Yuan,
M. Cho, and D. Z. Pan, “Dealing with IC manufacturability in
extreme scaling,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2012, pp. 240–242.

[3] K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z.
Pan, “Implications of triple patterning for 14 nm node design
and patterning,” in Proc. of SPIE, vol. 8327, 2012.

[4] C. Cork, J.-C. Madre, and L. Barnes, “Comparison of
triple-patterning decomposition algorithms using aperiodic tiling
patterns,” in Proc. of SPIE, vol. 7028, 2008.

[5] R. S. Ghaida, K. B. Agarwal, L. W. Liebmann, S. R. Nassif, and
P. Gupta, “A novel methodology for triple/multiple-patterning
layout decomposition,” in Proc. of SPIE, vol. 8327, 2011.

[6] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout
decomposition for triple patterning lithography,” in IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), 2011, pp. 1–8.

[7] S.-Y. Fang, W.-Y. Chen, and Y.-W. Chang, “A novel layout
decomposition algorithm for triple patterning lithography,” in
IEEE/ACM Design Automation Conference (DAC), 2012.

[8] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. Wong, “A
polynomial time triple patterning algorithm for cell based
row-structure layout,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2012.

[9] B. Yu, J.-R. Gao, and D. Z. Pan, “Triple patterning lithography
(TPL) layout decomposition using end-cutting,” in Proc. of
SPIE, vol. 8684, 2013.

[10] J. Kuang and E. F. Young, “An efficient layout decomposition
approach for triple patterning lithography,” in IEEE/ACM
Design Automation Conference (DAC), 2013.

[11] B. Yu, Y.-H. Lin, G. Luk-Pat, D. Ding, K. Lucas, and D. Z. Pan,
“A high-performance triple patterning layout decomposer with
balanced density,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013.

[12] L. Liebmann, D. Pietromonaco, and M. Graf,
“Decomposition-aware standard cell design flows to enable
double-patterning technology,” in Proc. of SPIE, vol. 7974, 2011.

[13] S. Hu and J. Hu, “Pattern sensitive placement for
manufacturability,” in ACM International Symposium on
Physical Design (ISPD), 2007, pp. 27–34.

[14] M. Gupta, K. Jeong, and A. B. Kahng, “Timing yield-aware
color reassignment and detailed placement perturbation for
double patterning lithography,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2009, pp.
607–614.

[15] J.-R. Gao, B. Yu, R. Huang, and D. Z. Pan, “Self-aligned double
patterning friendly configuration for standard cell library
considering placement,” in SPIE Intl. Symp. Advanced
Lithography, 2013.

[16] Q. Ma, H. Zhang, and M. D. F. Wong, “Triple patterning aware
routing and its comparison with double patterning aware routing
in 14nm technology,” in IEEE/ACM Design Automation
Conference (DAC), 2012, pp. 591–596.

[17] Y.-H. Lin, B. Yu, D. Z. Pan, and Y.-L. Li, “TRIAD: A triple
patterning lithography aware detailed router,” in IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), 2012.

[18] “NanGate FreePDK45 Generic Open Cell Library,”
http://www.si2.org/openeda.si2.org/projects/nangatelib.

[19] “Mentor Calibre,” http://www.mentor.com.

[20] “Predictive Technology Model ver. 2.1,” http://ptm.asu.edu.

[21] T. C. Hu and M.-T. Shing, Combinatorial Algorithms: Enlarged
Second Edition. Courier Dover Publications, 2002.

[22] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization of
linear placements for wirelength minimization with free sites,” in
IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 1999, pp. 241–244.

[23] U. Brenner and J. Vygen, “Faster optimal single-row placement
with fixed ordering,” in Proc. Design, Automation and Test in
Eurpoe, 2000, pp. 117–121.

[24] A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details
of a high quality, large-scale analytical placer,” in IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), 2005, pp. 891–898.

[25] S. Goto, “An efficient algorithm for the two-dimensional
placement problem in electrical circuit layout,” IEEE Trans. on
Circuits and Systems, vol. 28, no. 1, pp. 12–18, 1981.

[26] “Synopsys Design Compiler,” http://www.synopsys.com.

[27] “Cadence SOC Encounter,” http://www.cadence.com/.

