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EBL

Yo E-Beam lithography (EBL)
» Widely deployed in mask manufacturing
> Promising candidates for sub-22nm
¢+ Conventional EBDW: variable shaped beams (VSB)
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Layout Fracturing

-

‘ ¢+ Fundamental step before EBL writing
¢+ Decompose layout pattern => non-overlapping rectangles
¢+ Shot number dramatically increases for sub-22nm

> More complicated OPC

E-beam Shot Count Estimates by Node
(note: all shot count numbers = billions)

M1 (2x
scaling | M1 M1
Node | M1 actual |per node)| (4x) | (8x)
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L-Shape E-beam Shot
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\ ¢+ One more aperture cf. rectangular shots

¢ Potentially reduce shot number by up to 50%
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Previous Works

—Y
e Rectangular fracturing

» ILP [Kahng, SPIE'04, SPIE’06] or heuristic methods
[Dillon, SPIE’08; Ma+ SPIE'11]

Sliver

¢ L-shape fracturing
» Report w/o detail algorithms [Sahouria, SPIE'10]
» In geometrical science, heuristic horizontal slicing
» However, sliver minimization not considered
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Problem Formulation
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\ ¢ Input:
» Layout (a set of polygons)

¢ Output:

» Fracture the layout into a set of non-overlapping L-
shapes and rectangles

¢+ Objective:

> Minimize the shot count (L shapes or rectangles)
» Minimize the silver length of fractured shots
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Two Approaches
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e Rectangular Merging (RM) Algorithm

» Re-use previous rectangular fracturing results
» Merge rectangles into L-shapes

¢ Direct L-Shape Fracturing (DLF) Algorithm
» Direct L-Shape Generation
> Avoid redundant operations
» Nice properties to reduce problem size/complexity



Rectangular Merging (RM)

Y

+ Given input rectangles (through conventional VSB fracturing)

¢ Construct graph to represent the relationships

¢+ Edge selection through maximum matching O(nmlogn)
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Direct L-Shape Fracturing
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$ Concave vertex: with internal angle is 270°
¢ Cut: a horizontal or vertical line segment where at least one
of the two endpoints is a concave vertex

¢ Odd-Cut. a cut that has odd number of concave vertices on
one or both sides of the cut

Lemma 1: A polygon with ¢ concave vertices can be
decomposed into L-shapes with upper bound Nup = Lc / 2J +1
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Direct L-Shape Fracturing
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\ ¢+ Chord: A special cut whose two endpoints are both
concave

¢ Odd-Chord: a chord that is an odd-cut

Lemma 2: Dividing a polygon through a chord will not
Increase Nup

Lemma 3: Dividing a polygon with even number of concave
vertices through an odd-chord can reduce Nup by 1
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Direct L-Shape Fracturing Algorithm
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¢ Overall Flow
[ Input Polygon ]

Sliver Aware Chord Selection

Add Artificial Vertex

Division by Chords for Speed-Up
Sliver Aware L-Shape Fracturing Odd-cuts Detection

for each Sub-Polygon and Selection

[ Output L-shapes / Rectangles ]

¢ Step 1: chord selection and division =>
iIndependent sub-polygons

¢ Step 2: odd-cut detection and L-shape fracturing
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Odd-Chord Detection and Selection

Odd-Chord Detection

¢ Check whether odd-chord, from O(n) to O(1)
» Each vertex is associated with parity value p

Theorem 17: In a even polygon, chord ab is odd iff pa = pb

¢ All odd-chords can be detected in O(nlogn)

e(0) f0)
d(0)
Chord Selection c(0)
¢+ Prefer odd-chords 20) ;]
> To reduce shot count Nup
¢ Sliver minimization o) ™K HAT90)

¢+ Maximum weighted matching problem

J(1) i(1)
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Odd-Cut Detection
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\0 Check whether a cut is odd, in O(1)
¢ Each vertex is associated (order number, parity)
¢ Theorem 2: In odd polygon, cut (a, bc) is an odd-
cut iff { Pa = Pb, lf Oq > Op
Pa 7& Db, lf Oq < Op
¢ Odd-cut detection can be finished in O(nlogn)
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Effective Odd-Cut Info Update

‘o Only update one vertex and four edges, in O(1) time
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L-Shape Fracturing through Odd-Cut
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k After chord selection, initial polygon is divided
into a set of sub-polygons  E——— £

¢ Fracture each sub-polygon through odd-cuts

Algorithm 1 LShapeFracturing(P)

1: Find all odd-cuts; ‘
: | Choose cut cc considering the sliver minimization; |

: |if Cannot find legal odd-cut then
:|  Generate an auxiliary cut cc;
. |end if

2

3 |

4 |
T

6: | Cut P through cc into two polygons P1 and P2;| ° |

; : |Update one vertex and four edges; Effective Odd-cut info
9

: LShapeFracturing(P1); Update
: LShapeFracturing(P2);

Runtime complexity O(n?logn)



Y

Speed-up Techniques

Select multiple independent odd cuts simultaneously
¢ For odd-polygon

(odd # concave pts)

¢ For even-polygon
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Practical runtime complexity can be reduced to O(nlogn)
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Experimental Results

B

¢ Implement RM and DLF in C++

¢ 3.0GHz Linux machine with 32G RAM

¢ ISCAS 85&89 benchmarks

¢ Scaled to 28nm nodes

¢+ Lithography simulations and OPC

¢ Implement rectangular fracturing in [Ma, SPIE'11]
¢ Sliver parameter € = 5nm
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Shot Number Comparison
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¢ Compared with [SPIE'11], RM reduces shot no. by 37%
¢ DLF: reduces 39%
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Sliver Length Comparison
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¢ DLF can reduce sliver by 82% cf. [SPIE’11], 67% cf. RM
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Runtime Comparison
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¢ DLF is very efficient, only 11% runtime cf. [SPIE’11]
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Runtime Scalability
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¢ DLF scales better than both [SPIE’11] and RM
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Conclusion

-

This work proposed the first systematic and
algorithmic study in EBL L-shaped fracturing

Two algorithms are proposed: RM and DLF
Sliver minimization is explicitly considered
DLF obtained the best results in all metrics

EBL is under heavy R&D, including massive
parallel EBDW.

More research needed on EBL-aware physical design
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