ASPDAG:2013 UT DA

L-Shape Based Layout Fracturing
for E-Beam Lithography

Bei Yu, Jhih-Rong Gao, and David Z. Pan
Dept. of Electrical & Computer Engineering
University of Texas at Austin

Supported in part by NSF and NSFC

Outline

— Y
| ¢ Introduction
¢ Problem Formulation

¢ Algorithms

» Rectangular Merging (RM) Algorithm
» Direct L-Shape Fracturing (DLF) Algorithm

¢+ Experimental Results
¢ Conclusion

EBL

Yo E-Beam lithography (EBL)
» Widely deployed in mask manufacturing
> Promising candidates for sub-22nm
¢+ Conventional EBDW: variable shaped beams (VSB)

Electrical Gun
Shaping
Aperture

%ﬂ' Aperture
M Mask
3

Layout Fracturing

-

‘ ¢+ Fundamental step before EBL writing
¢+ Decompose layout pattern => non-overlapping rectangles
¢+ Shot number dramatically increases for sub-22nm

> More complicated OPC

E-beam Shot Count Estimates by Node
(note: all shot count numbers = billions)

M1 (2x
scaling | M1 M1
Node | M1 actual |per node)| (4x) | (8x)
14 620 2480 | 9920
22 310 620 | 1240
32 155
45 70

Courtesy IBM

L-Shape E-beam Shot

—Y
\ ¢+ One more aperture cf. rectangular shots

¢ Potentially reduce shot number by up to 50%

Electrical Gun) Electrical Gun
Shaping Shaping
Aperture Aperture

—
< o Aperture
2" Aperture
M 4 42/ 3" Aperture

\B\l

Previous Works

—Y
e Rectangular fracturing

» ILP [Kahng, SPIE'04, SPIE’06] or heuristic methods
[Dillon, SPIE’08; Ma+ SPIE'11]

Sliver

¢ L-shape fracturing
» Report w/o detail algorithms [Sahouria, SPIE'10]
» In geometrical science, heuristic horizontal slicing
» However, sliver minimization not considered

6

Problem Formulation

—Y
\ ¢ Input:
» Layout (a set of polygons)

¢ Output:

» Fracture the layout into a set of non-overlapping L-
shapes and rectangles

¢+ Objective:

> Minimize the shot count (L shapes or rectangles)
» Minimize the silver length of fractured shots

Outline

—Y
\ ¢ Introduction
¢ Problem Formulation

¢ Algorithms

» Rectangular Merging (RM) Algorithm
» Direct L-Shape Fracturing (DLF) Algorithm

¢+ Experimental Results
¢ Conclusion

Two Approaches

—Y
e Rectangular Merging (RM) Algorithm

» Re-use previous rectangular fracturing results
» Merge rectangles into L-shapes

¢ Direct L-Shape Fracturing (DLF) Algorithm
» Direct L-Shape Generation
> Avoid redundant operations
» Nice properties to reduce problem size/complexity

Rectangular Merging (RM)

Y

+ Given input rectangles (through conventional VSB fracturing)

¢ Construct graph to represent the relationships

¢+ Edge selection through maximum matching O(nmlogn)

ON ON
) T2) |y 2) | =y
(4) O]
=
Not optimal Optimal
(3 shots) (2 shots)

Direct L-Shape Fracturing

—Y
$ Concave vertex: with internal angle is 270°
¢ Cut: a horizontal or vertical line segment where at least one
of the two endpoints is a concave vertex

¢ Odd-Cut. a cut that has odd number of concave vertices on
one or both sides of the cut

Lemma 1: A polygon with ¢ concave vertices can be
decomposed into L-shapes with upper bound Nup = Lc / 2J +1

c d

concave vertex
An odd-cut | eL/ f

c = 3 =>» this polygon can
b

a—.Bq:---- - ! be decomposed into two
| L-shapes

K j \
Another odd cut

Direct L-Shape Fracturing

—
\ ¢+ Chord: A special cut whose two endpoints are both
concave

¢ Odd-Chord: a chord that is an odd-cut

Lemma 2: Dividing a polygon through a chord will not
Increase Nup

Lemma 3: Dividing a polygon with even number of concave
vertices through an odd-chord can reduce Nup by 1

d_c] d o]
a b, = a b} =
| k[o jh g I k['Ih N9 ‘

. Odd-ch

j i chord j |

Direct L-Shape Fracturing Algorithm

—Yy
¢ Overall Flow
[Input Polygon]

Sliver Aware Chord Selection

Add Artificial Vertex

Division by Chords for Speed-Up
Sliver Aware L-Shape Fracturing Odd-cuts Detection

for each Sub-Polygon and Selection

[Output L-shapes / Rectangles]

¢ Step 1: chord selection and division =>
iIndependent sub-polygons

¢ Step 2: odd-cut detection and L-shape fracturing

Y

Odd-Chord Detection and Selection

Odd-Chord Detection

¢ Check whether odd-chord, from O(n) to O(1)
» Each vertex is associated with parity value p

Theorem 17: In a even polygon, chord ab is odd iff pa = pb

¢ All odd-chords can be detected in O(nlogn)

e(0) f0)
d(0)
Chord Selection c(0)
¢+ Prefer odd-chords 20) ;]
> To reduce shot count Nup
¢ Sliver minimization o) ™K HAT90)

¢+ Maximum weighted matching problem

J(1) i(1)
14

Odd-Cut Detection

—Y
\0 Check whether a cut is odd, in O(1)
¢ Each vertex is associated (order number, parity)
¢ Theorem 2: In odd polygon, cut (a, bc) is an odd-
cut iff { Pa = Pb, lf Oq > Op
Pa 7& Db, lf Oq < Op
¢ Odd-cut detection can be finished in O(nlogn)

a(7.0)f h(8,0)

di@.1)
i(10,1) Ob (2) < Of (6), Pb (1) # Pf (0), v/

Yz at0 Oi(9)>Oc (3), Pi(1)=Pc (1), v

e(5,1) f(6,0)‘

Of (6) > Ob (2), Pf (0) # Pb (1), %

d@4,1) C(3,1)

Effective Odd-Cut Info Update

‘o Only update one vertex and four edges, in O(1) time

g(7.0) h(8.,0)

i(9,1)

e(5,1) f(6,0)

d@4,1)

b(2,1)

c(3,1)

j(10,1)

a(1,0)

=)

e(5,1)

g(7.0)

f(6,0)

h(s,0)

i(9,1)

j(10,1)

b2,1) a(1,0)

d@4,1)

Update may not be O(1) if odd-cut is a chord

i(9,1) j(10,1)

k(11,0)

g(7,0) h(8,1

(6,0)

i(9,1)

utput L
v N

(3,1) (3,1) c@3,1)

[

Input dPqlygon

)

1) Add Artificial Vertex
for Speed-Up

\ 4
)

I
Odd-cuts Detection
and Selection

L-Shape Fracturing through Odd-Cut

—Y
k After chord selection, initial polygon is divided
into a set of sub-polygons E——— £

¢ Fracture each sub-polygon through odd-cuts

Algorithm 1 LShapeFracturing(P)

1: Find all odd-cuts; ‘
: | Choose cut cc considering the sliver minimization; |

: |if Cannot find legal odd-cut then
:| Generate an auxiliary cut cc;
. |end if

2

3 |

4 |
T

6: | Cut P through cc into two polygons P1 and P2;| ° |

; : |Update one vertex and four edges; Effective Odd-cut info
9

: LShapeFracturing(P1); Update
: LShapeFracturing(P2);

Runtime complexity O(n?logn)

Y

Speed-up Techniques

Select multiple independent odd cuts simultaneously
¢ For odd-polygon

(odd # concave pts)

¢ For even-polygon

:

B

!

!

|

T

!

—

Artificial Concave Vertex

!

=t

—

Practical runtime complexity can be reduced to O(nlogn)

18

Experimental Results

B

¢ Implement RM and DLF in C++

¢ 3.0GHz Linux machine with 32G RAM

¢ ISCAS 85&89 benchmarks

¢ Scaled to 28nm nodes

¢+ Lithography simulations and OPC

¢ Implement rectangular fracturing in [Ma, SPIE'11]
¢ Sliver parameter € = 5nm

19

Shot Number Comparison

1200000 —/m™—mm—4—r———————r+——7—"—T1—"—"—"—"——
X R ERCEEEEEEEETEEEEERRTEY EEREEE _
] [SPIE’11]

800,000 [~ W (SPIEII+RM. - oo N

. B DLF
2
g
Z 600,000 [7777ttt
°
N
wn
400,000 - - sr e
200,000 |- -t
0 Mﬁm&h

AN OO © \n ®w O ©O wn w & 0O~ & < ©
n SN 0 n O E = = 00 w»n o0 =— o o0 w©n
<+t S ®© 0 & v wn 0 A n < T O n ®
O U LU 4 ~~ & o wnvnoOo G%Q%m
—_—

o O O O U O QO o 9 9 =

¢ Compared with [SPIE'11], RM reduces shot no. by 37%
¢ DLF: reduces 39%

20

Sliver Length Comparison

12,000 T I I T I I T T I T T T I T I
10,000 [=== - 7o m o I N
] [SPIE’11]
8,000 - B [SPIE’11]J+RM - """ """ - - m
= B DLF
on
o
Q
D 6,000 [
()
2
7
4,000 [-
2,000 [

I 2 8 8B 8L 3 Vg BE I I I
< <t o0 on (@) \O) on Q\ ! <t <t o)) v oo
O U U 4 & a8 o0 v Y ©~ — o6 »vn o6
o o v L U LU LU wvn w9 « © =
¢ DLF can reduce sliver by 82% cf. [SPIE’11], 67% cf. RM

21

Runtime Comparison

4,000 T T T T T T T T T T T T T T T
3,500 [ccttteseecciiiiitoiiriiiiicecececescscecocc ol
] [SPIE’11]
_______________________ B [SPIE’11]+RM
3,000 B DLF
2,500 [
@
(]
B 2,000 [
=
o}
&
1,500 [- - - r o
1,000 [- --mmmms s
SO0 [~ -
0
(@\| (@) (an) w o0 () o w o0 (@\] o0 ~ (@\] <+ (-]
cn (@) o0 W (e} ~ <t — (020 w o0 Y— on (020 w
<t <t o0 on (@) \O v on (@\] (V) <t <t (@) v o0
O U LU S A ada 16 n 0 N =S o8 v oo
O U LU LU UV U L »v 9 9 o =

¢ DLF is very efficient, only 11% runtime cf. [SPIE’11]

22

Runtime Scalability
—Y

I I | | | | |
[SPIE 11] ——¢—

[SPIE 11]4+RM ———
DLF —o—

‘ 4000 ,

3500

3000

2500
2000
1500
1000

500

6

N
e — —< I] | | |

0 20 40 60 120 140 160 180

0

80 100
polygon # (x 1000)

¢ DLF scales better than both [SPIE’11] and RM

23

Conclusion

-

This work proposed the first systematic and
algorithmic study in EBL L-shaped fracturing

Two algorithms are proposed: RM and DLF
Sliver minimization is explicitly considered
DLF obtained the best results in all metrics

EBL is under heavy R&D, including massive
parallel EBDW.

More research needed on EBL-aware physical design

24

