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Background



Deep Learning SR Model Architecture

¢ The architecture of linearly-assembled pixel-adaptive regression network (LAPAR)
with four basic stages, i.e., stage 1: up-sampling; stage 2: LaparNet; stage 3: dictionary
assembling; stage 4: filtering.
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Deep Learning SR Model Architecture

Stage 1: bilinear up-sampling to upscale input image x

Stage 2: LaparNet extract features as coefficient matrix ® from original input x

Stage 3: dictionary assembling, in which the transformation matrix F is computed
according to ~ and the pre-defined dictionary D

Stage 4: filtering, in which the output HR image y is obtained by applying F to B, i.e.,
y = FBT
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GPU Programming Architecture

¢ GPU memory hierarchy and communication mode
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The hardware structure contains a groups of computation cores (streaming
processors), multi-level caches, control units and global memory units

CUDA programming architecture is designed as a wrapper of the hardware

Each kernel controls a computation grid which can be further divided into multiple
blocks.

Each block is partitioned into a group of threads that can run the same code on
different data, synchronously
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Overview of our framework



Dictionary Compression: Channel Pruning

Methodolog

B,W = argming WN HHgt — Fw BT’ ”27
st. Fwg= Zz 0 Bi®D, 1)
® = LaparNet(X, W),
1Bllo < aL.
where N is the size of input batch of images, ® is the coefficient vector extracted
from LaparNet with parameters W and Hg; is the ground truth high-resolution

image. f is the selecting vector on filters of D where 5; = 0 means the i-th item in
the dictionary will be ignored during the compression process.
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Dictionary Compression: Channel Pruning

° With two objectives W and j3, to solve this optimization problem efficiently, an
alternating method including two steps is adopted.

¢ Step 1: search the suitable selecting vector 5 corresponding to the required «;.

¢ Step 2: tune the parameters W corresponding to the reserved dictionary items with
the minimization objective.
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Dictionary Compression: Channel Pruning

¢ Step 1is actually an NP-hard problem. relax the problem to ¢; regulation. solved by
utilizing the LASSO regression.

. 2
B = argming & | Hgt — Fw,ﬁBTHZ + A8l )
s.t.||Bllo < aL.

¢ Step 2 is to update the parameters

1 T2
W = arg min — HHgt — FwpB H . 3)
W N ’ 2
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Dictionary Compression

Visual illustration of dictionary compression, the upper flow represents original dictionary query
and filtering, namely stage 3 + stage 4 in Fig. 2, The flow below demonstrates the compression
process of the dictionary query

¢ Dictionary is knowledgeable but may be redundant as well, a distilled compact
dictionary is suitable for faster query

¢ Structured filter pruning of model is hardware friendly, compared with fine-grained
unstructured pruning 11/22



Dictionary Compression

Algorithm 1 Dictionary Selection Strategy

1: Input: D € ]RLX"Z, small X\, target c, tolerance ¢;

2: Input: pre-trained Wy , coefficient matrix ®;

3Z t« 0,9+ 1.0,8) < 1€ ]RL, Yo +— 1€ ]RL, £ <« reconstruction error
4: repeat

5: apq — ap — A

6: N+ A

7t while |Bi11]o > csyq - Ldo

8: Fix Wy, update B;11 < argming £ (Wi, BD) + Ary1 1B
9: A1 2 Mg

10: end while

11:

Neft <= 0-5X 41, Arignt = A1
12: while |ayqy L= [Byafg| > e Ldo

13: A1 = 1/2(Niee + Nige);

14: Fix Wi, update B; 1 <+ arg ming Z (Wi, BD) + Ay B
15: if [Bi41]y < 41 - Lthen

16: Neft = A1

17: else if }BH—l |0 > oy - Lthen

18: Aright = At41;

19: end if

20:  end while
21: Fix Byy1, update Wy 1 < arg miny £ (W, 8;1D);
22:  t=t+1

23: until ap < a

> Equation (1);

> Equation (2)
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Dictionary Compression
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Single image super-resolution (SISR) performance of our model with different dictionary
compression ratios, in comparison with other SR methods. LAPAR-A (Per.%) represents our model
with dictionary size shrunk to Per.%. PSNR means peak signal-to-noise ratio. SSIM means structural
similarity index measure. PSNR and SSIM are two common metrics to measure the quality of
images. The higher the better.
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Optimization of Deployments On GPU

An example of the proposed computation engine for image filtering operation

¢ resources in GPU are limited, which concurrently restricts the computation patterns
with respect to the threads, blocks, and etc

¢ on-chip-memory and l1-cache is limit for each SM.

¢ Increase thread number will increase parallelism 14/22



Optimization of Deployments On GPU

Constrains:
T, =(HxWxC)/(SxPxR),

T < min(Ty, Tsm), 4)
nx xnyxnz<WSxPxT,
Denote the number of SMs in GPU as S, the number of processing blocks in each
SM as P, the size of register file in each processing block as R, the maximum
number of threads in each warp as WS. The GPU compute capability constrains

the number of warps in each block as smaller than Ty;,. Denote the three
dimensions of the thread block as (nx, ny, nz).

1 <nx<H,
1<ny<W, @)
1<nz<C.
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Results

Table: Comparisons on multiple benchmark datasets of our model and other popular SR
networks. The dictionary in our model is compressed to 10% of original size for
evaluation. Performance metrics are PSNR/SSIM. Bold: best results

Scale Method Set5 Set14 B100 Urban100 Mangal09
SRCNNDong, Loy, He, et al. 2014 36.66/0.9542 | 32.42/0.9063 | 31.36/0.8879 | 29.50/0.8946 | 35.74/0.9661
FSRCNNDong, Loy, and Tang 2016 37.00/0.9558 | 32.63/0.9088 | 31.53/0.8920 | 29.88/0.9020 | 36.67/0.9694
'VDSRJ. Kim, J. K. Lee, and K. M. Lee 2016 | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 | 37.22/0.9729
DRRNTai, Yang, and Liu 2017 37.74/0.9591 | 33.23/0.9136 | 32.05/0.8973 | 31.23/0.9188 | 37.92/0.9760
x2 LapSRNLai et al. 2017 37.52/0.9590 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9100 | 37.27/0.9740
SRFBN-SLi et al. 2019 37.78/0.9597 | 33.35/0.9156 | 32.00/0.8970 | 31.41/0.9207 | 38.06/0.9757
FALSR-AChu et al. 2021 37.82/0.9595 | 33.55/0.9168 | 32.12/0.8987 | 31.93/0.9256 -
SRMDNEFK. Zhang, Zuo, and L. Zhang 2015 | 37.79/0.9600 | 33.32/0.9150 | 32.05/0.8980 | 31.33/0.9200 -
Ours 37.98/0.9604 | 33.59/0.9181 | 32.19/0.8999 | 32.09/0.9281 | 38.60/0.9771
SRCNNDong, Loy, He, et al. 2014 32.75/0.9090 | 29.28/0.8209 | 28.41/0.7863 | 26.24/0.7989 | 30.59/0.9107
FSRCNNDong, Loy, and Tang 2016 33.16/0.9140 | 29.43/0.8242 | 28.53/0.7910 | 26.43/0.8080 | 30.98/0.9212
VDSR]. Kim, J. K. Lee, and K. M. Lee 2016 | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 | 32.01/0.9310
3 DRRNTai, Yang, and Liu 2017 34.03/0.9244 | 29.96/0.8349 | 28.95/0.8004 | 27.53/0.8378 | 32.74/0.9390
SelNetChoi and M. Kim 2017 34.27/0.9257 | 30.30/0.8399 | 28.97/0.8025 - -
CARNAhn, Kang, and Sohn 2018 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 -
SRFBN-SLi et al. 2019 34.20/0.9255 | 30.10/0.8372 | 28.96/0.8010 | 27.66/0.8415 | 33.02/0.9404
Ours 34.35/0.9267 | 30.33/0.8420 | 29.11/0.8054 | 28.12/0.8523 | 33.48/0.9439
SRCNNDong, Loy, He, et al. 2014 30.48/0.8628 | 27.49/0.7503 | 26.90/0.7101 | 24.52/0.7221 | 27.66/0.8505
FSRCNNDong, Loy, and Tang 2016 30.71/0.8657 | 27.59/0.7535 | 26.98/0.7150 | 24.62/0.7280 | 27.90/0.8517
VDSRJ. Kim, J. K. Lee, and K. M. Lee 2016 | 31.35/0.8838 | 28.01/0.7674 | 27.29/0.7251 | 25.18/0.7524 | 28.83/0.8809
4 DRRNTai, Yang, and Liu 2017 31.68/0.8888 | 28.21/0.7720 | 27.38/0.7284 | 25.44/0.7638 | 29.46/0.8960
LapSRNLai et al. 2017 31.54/0.8850 | 28.19/0.7720 | 27.32/0.7280 | 25.21/0.7560 | 29.09/0.8845
CARNAhn, Kang, and Sohn 2018 32.13/0.8937 | 28.60/0.7806 | 27.58/0.7349 | 26.07/0.7837 -
SRFBN-SLi et al. 2019 31.98/0.8923 | 28.45/0.7779 | 27.44/0.7313 | 25.71/0.7719 | 29.91/0.9008
Ours 32.15/0.8944 | 28.61/0.7817 | 27.59/0.7366 | 26.14/0.7873 | 30.39/0.9072
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Results

Table: Inference Time (ms) and Acceleration ratios

Input size | Scale NVIDIA GeForce RTX 2080 Ti NVIDIA Jetson Xavier NX
P PyTorch TensorRT Ours Acc. (PyTorch) Acc. (TensorRT) | TensorRT ~ Ours  Acc. (TensorRT)
x2 6.94 1.30 1.02 %680.39% x127.45% 12.37 9.04 %x136.84%
64 x 64 x3 8.26 1.94 1.40 %x590.00% %x138.57% 22.62 14.28 % 158.40%
x4 9.86 2.79 1.88 %524.46% % 148.40% 35.83 20.54 x174.44%
x2 8.74 3.59 2.66 %328.57% %134.96% 52.12 37.25 %x139.92%
128 x 128 | X3 13.04 6.19 4.16 %313.46% %148.80% 90.33 54.26 %x166.48%
x4 18.07 9.71 6.13 %294.78% x158.40% 144.34 81.29 x177.56%
x2 17.12 12.40 9.25 %185.08% x134.05% 177.57  124.12 % 143.06%
180 x 320 | x3 30.83 21.66 14.63 %210.73% % 148.05% 325.07  200.02 %x162.52%
x4 44.69 34.69 22.12 %202.03% %156.82% 534.99  318.60 %x167.92%
x2 67.36 50.26 37.47 %x179.77% x134.13% 74872 530.23 x141.21%
360 x 640 | %3 105.32 88.45 59.20 x177.90% %149.41% 146691  973.25 x150.72%
x4 406.93 141.08  91.09 x540.02% x154.88% - - -
Average | - | 6143 3117 2091  x352.27% x144.49% | 32826  214.81 x156.28%
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Time Cost (ms)

Time Cost (ms)
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(d) Input Size 360x 640

Time consumptions of the dictionary query and filtering with different compression ratios. Different
input image sizes and scaling factors (from 2 to 4) are evaluated.
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