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Backgrounds (i)

¢ Process technology nodes shrinks
¢ Increasingly complicated IC designs

¢ The increase of appearing probabilities of manufacturing process-based defects

Wafer defects heavily affect product yield
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Backgrounds (ii)

* Wafer map defect classification: locating defects at early fabrication stages
¢ To improve the yield with less human resource involved
® The wafer map can be obtained by chip probing

¢ Defective grains on a wafer map tend to converge into a certain distribution pattern
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Prior Works

* Manually-crafted feature-driven:

- Supervised Method ! %: manually designed features (e.g., geometrical, gray,
texture, and projection) + classifier (e.g., SVM)
- Unsupervised Method 3: manually designed features + clustering method

* Automatic feature extraction-based  °: exploiting deep learning model

Wu et al., “Wafer map failure pattern recognition and similarity ranking for large-scale data sets,” TSM, 2015.
Yu et al., “Wafer map defect detection and recognition using joint local and nonlocal linear discriminant analysis,” TSM, 2016.
Alawieh et al., “Identifying wafer-level systematic failure patterns via unsupervised learning,” TCAD, 2017.

Nakazawa et al., “Wafer map defect pattern classification and image retrieval using convolutional neural network,” TSM, 2018.
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Alawieh et al., “Wafer map defect patterns classification using deep selective learning,” DAC, 2020.



Existing Issues

© Manually inspection is time-consuming
© Imbalanced distribution issue

© Unlabeled wafer maps are seldom exploited
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Issues in an example dataset: WM-811K '

1“WM—811K," https://www.kaggle.com/gingyi/wm8llk-wafer-map. 6/22


https://www.kaggle.com/qingyi/wm811k-wafer-map.

Our Solution: Overview
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Our Solution: The few shot learner (i)

¢ To learn representations that generalize well to the minority failure pattern types
where few wafer images are available.

¢ In one training batch, the wafer map embeddings are trained to predict the labels of
Ng x N¢ query wafer maps conditioned on Ns x N¢ support wafer maps using a
certain classifier.

- A training set of N labeled examples Dyin = {(¥1,41) ,-- -, (¥n,YN)}

- A support set D; and a query set D, are sampled from the Dy, per training batch
- Dy: a subset of D; labeled with wafer defect type k

- Nc(< K): the number of classes per batch

- Ng: the number of support wafer examples per class (Ns is usually small)

- Ng: the number of query examples for each class
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Our Solution: The few shot learner (ii)

* A Prototypical few-shot learning learner with the backbone f(-; ¢)

* Prototypical network computes a vector representation ¢, € RM (termed as
prototype) of the central of each class

® Each prototype is computed by taking the mean of the embedded support wafer
map vectors belonging to the associated defect type:

o] o fle (1)

(xn%)EDk

- A training set of N labeled examples Dy = {(x1,¥1) ..., (¥n,yn)}
- Dy: a subset of D; labeled with wafer defect type k
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Our Solution: The few shot learner (iii)

Given a distance function d : RM x RM — [0, +o0), the definition of the empirical
loss function is:

U(y,y) = —logp(y =k | x, )
og P (—d (f(x; b), cx)) ’ ()
S eSqexp (—d (f(x; $), c))

° p(y = k| x, ¢): the softmax function over squared Euclidean distances to the
prototypes in the embedding space.

¢ The query wafer defect map is classified based on p(y =k | x, )

The loss of few-shot learning /f, for one batch is minimizing the empirical loss
£(yj,y;) on the whole query set along with a suitable regularization r:

NQXNC
Kfew = Z 4 (yj’]/]') +r 3)
j:17
(%j:9;) €Dy
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Our Solution: The few shot learner (iv)
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The illustration of the Prototypical network-based 8-shot learner.
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Our Solution: The self-supervised learner (i)

* Making full use of unlabeled wafer images

® Operating on joint embeddings of input wafer image augmentations.
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Our Solution: The self-supervised learner (ii)

¢ Data augmentation module (e.g., rotation, top-bottom and left-right flipping)

® Backbone network

¢ The self-supervised loss 4
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Our Solution: The self-supervised learner (iii)

¢ The self-supervised loss /s

lyg = Z (1 11 + A Z Z ij» 4)

i i jA

- A a positive constant
- M: the correlation matrix which computes the correlations between the outputs

of the two augmented views along the batch dimension

- Mi]' in M:
e .zt

Zb b,i”b,j (5)

" \/Zh ebz \/Zb eh,]

* ¢’ and ¢": latent embeddings of two views

14/22



Our Solution: The overall architecture design
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The Experiment Setup (i)

¢ A platform with a Xeon Silver 4114 CPU processor and Nvidia TITAN Xp Graphic
card

¢ Industry Benchmark Suite: WM-811K

()

9 kinds of wafer map pattens: (a) Center; (b) Donut; (c) Edge-Loc; (d) Edge-Ring; (e) Location; (f)
Near-Full; (g) Random; (h) Scratch; (i) None (the defect-free).
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The Experiment Setup (ii)

* Benchmark Statistics:

Table: Benchmark Statistics

Categories Training Set Testing Set
# | Percent (%) # | Percent (%)

Center 2576 248 1718 248
Donut 333 0.32 222 0.32
Edge-Loc | 3113 2.99 2076 3.00
Edge-Ring | 5808 5.60 3872 5.60
Location 2155 2.08 1438 2.08
Near-Full 89 0.09 60 0.09
Random 519 0.50 347 0.50
Scratch 715 0.69 478 0.69
None 88459 85.25 58972 85.25
Total | 103767 | 100 | 69183 | 100
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Comparison with state of the arts (i)

® Metrics: Precision, Recall, F; score

Table: Comparison with state of the arts

Defect Pattern TSM'151 DAC202 Ours
Precision Recall F; Precision Recall F; Precision Recall Fq

Center 0.661 0.861 0.748 0.949 0942 0.945 0.736 0.950 0.830
Donut 0.729 0.459 0.564 0.798 0.748 0.772 0.806 0.842 0.824
Edge-Loc 0.453 0.577 0.507 0.739 0.690 0.714 0.647 0.802 0.716
Edge-Ring 0.611 0.908 0.731 0.992 0950 0.970 0.992 0.921 0.955
Location 0.533 0.346 0.420 0.191 0.627 0.293 0.605 0.720  0.658
Near-Full 0.254 0.867 0.392 0.697 0.383 0.495 0.810 0.867  0.840
Random 0.412 0.101 0.162 0.608 0.553 0.579 0.816 0.652 0.724
Scratch 0.835 0.339 0.482 0.127 0.287 0.176 0.474 0.701  0.565
None 0.973 0.940 0.956 0.985 0.927 0.955 0.986 0.967 0.977
Macro-average 0.607 0.600 0.551 0.676 0.679  0.656 0.764 0.825 0.788
Ratio 0.795 0.727  0.700 0.885 0.823 0.832 1.000 1.000 1.000

! Wu et al., “Wafer map failure pattern recognition and similarity ranking for large-scale data sets,” TSM, 2015.
2Alawieh et al., “Wafer map defect patterns classification using deep selective learning,” DAC, 2020. 18/22



Comparison with state of the arts (ii)

¢ The heat maps of normalized confusion matrixes of three algorithms
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The Ablation Study

® ‘w/o. FSL”: the flow trained with a typical cross-entropy loss as a replacement to the
few-shot learning loss

® “w/o0.SSL”: the flow trained without self-supervised learning loss

e “Full": the proposed flow
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Conclusion

® An end-to-end, CNN-based wafer failure pattern classification framework
¢ Two-branch design

¢ Alleviate the imbalanced distribution issue and Make full use of unlabeled wafer
data
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