BOOM-Explorer: RISC-V BOOM Microarchitecture Design
Space Exploration Framework

Chen Bai!, Qi Sun!, Jianwang Zhai2, Yuzhe Ma!, Bei Yu!, Martin D.E. Wong1
!The Chinese University of Hong Kong

2Tsinghua University
{cbai,byu}l@cse.cuhk.edu.hk

Now. 1, 2021




Outline

@ Introduction

@ Preliminaries

©® BOOM-Explorer

@ Experiments

2/35



Introduction



Introduction

ISA & Microarchitecture

T

°* ARM a rm
. riscv b RISC

~: open-source & numerous designs

4/35



Introduction
ISA & Microarchitecture

°* ARM a rm
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~: open-source & numerous designs

¢ An implementation of an ISA in a processor.

¢ It can affect the performance, power dissipation, area, and etc. of a processor.
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Introduction

Parametric Microarchitecture Design

¢ Parametric among different modules.

Cache structures

Decoders

Execution units

Load and store unit

Key buffers, queues & stacks
etc.

* Discrete candidate values.

¢ They are important to performance, power and area (PPA) values.
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Introduction
Previous Solutions & Limitations

In industry:

¢ Rely on engineering experience of CPU architects.
In academia:

° ANN-based model [Ipek et al. 2006]

¢ Regression-based model [Lee and Brooks 2007]

® AdaBoost-based model [Li et al. 2016]
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Introduction

Previous Solutions & Limitations

Industry solutions:
¢ Lacks scalability for newly emerged processors.
Academic solutions:
¢ Fail to embed prior knowledge of microarchitecture designs to algorithms.

¢ Lack discussions on striking a good balance between the performance and power
dissipation of a microarchitecture design.

7/35



Preliminaries



Preliminaries

RISC-V BOOM
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Overview of RISC-V BOOM [Asanovic, Patterson, and C. Celio 2015] [C. P. Celio 2017]
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Preliminaries

RISC-V Microarchitecture Design Space

Table: Microarchitecture Design Space of BOOM

Module |  Component | Descriptions | Candidate Values
FetchWidth Number of instructions the fetch unit can retrieve once 4,8
FetchBufferEntry Entries of the fetch buffer register 8,16,24,32,35,40
RasEntry Entries of the Return Address Stack (RAS) 16,24, 32
FrontEnd BranchCount Entries of the Branch Target Buffer (BTB) 8,12,16,20
ICacheWay Associate sets of L1 I-Cache 2,4,8
ICacheTLB Entries of Table Look-aside Buffer (TLB) in L1 [-Cache 8,16,32
ICacheFetchBytes Unit of line capacity that L1 I-Cache supports 2,4
DecodeWidth Number of instructions the decoding unit can decode once 1,2,3,4,5
- RobEntry Entries of the reorder buffer 32, 64,96,128, 130
IntPhyRegister Number of physical integer registers 48, 64, 80,96, 112
FpPhyRegister Number of physical floating-point registers 48, 64, 80,96, 112
MemlssueWidth Number of memory-related instructions that can issue once 1,2
EU IntIssueWidth Number of integer-related instructions that can issue once 1,2,3,4,5
FplssueWidth Number of floating-point-related instructions that can issue once ,2
LDQEntry Entries of the Loading Queue (LDQ) 8,16,24,32
STQEntry Entries of the Store Queue (STQ) 8,16,24,32
LSU DCacheWay Associate sets of L1 D-Cache 2,4,8
DCacheMSHR Entries of Miss Status Handling Register (MSHR) 2,4,8
DCacheTLB Entries of Table Look-aside Buffer (TLB) in L1 D-Cache 8,16,32
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Preliminaries

RISC-V BOOM Design Constraints / Correlations

Table: Constraints of BOOM design specifications

Rule ‘ Descriptions

1 FetchWdith > DecodeWidth
RobEntry | DecodeWidth *
FetchBufferEntry > FetchWidth
FetchBufferEntry | DecodeWidth
fetchWidth = 2x ICacheFetchBytes
IntPhyRegister = FpPhyRegister
LDQEntry = STQEntry
MemlssueWidth = FplssueWidth

* The symbol “|” means RobEntry should be divisi-
ble by DecodeWidth

RO Ul W
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Preliminaries
Definitions

A combination of candidate values defined in Table 1.
A legal microarchitecture is encoded as a feature vector x € D.

The power is to be defined as

P=P dynamic + Pshort-circuit + P leakage- (1)

Clock cycles are consumed when a BOOM design runs a benchmark.
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Preliminaries

Definitions

An objective vector f(x) is said to be dominated by f(x") in a n-dimensional space if

Vie [L,n], fi(x)<fi(x)

. 2)
JFell,n], fix)<fi(x)
and we denote x” = x.
Pareto-optimal set is x € D that are not dominated by any other.
fo(z
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Preliminaries
Problem Formulation

In the design space D, find a series of microarchitectures X that form the Pareto optimality among
power and performance’ Y € Y.
Hence, Y = {yly’ # y.Vy' € Y}, X = {x|f(x) € Y,Vx € D}.
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An Overview

S——
BOOM
Design Space

¢ Embed prior knowledge on
Transductive Experimental Design [Yu,
Bi, and Tresp 2006] — (MicroAL)

¢ Gaussian process with Deep Kernel
Learning (DKL-GP)

An Overview of BOOM-Explorer

16/35



BOOM-Explorer

An Overview

S——
BOOM
Design Space

¢ Embed prior knowledge on
Transductive Experimental Design [Yu,
Bi, and Tresp 2006] — (MicroAL)

¢ Gaussian process with Deep Kernel
Learning (DKL-GP)

¢ Bayesian Optimization with

Expectation Improvement on Pareto
Hypervolume (EIPV)

An Overview of BOOM-Explorer
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BOOM-Explorer

Embed prior knowledge on TED — MicroAL

e

_
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|

+DecodeWidth=1  Algorithm 1 TED (U, 1, b)
*DecodeWidth = 2
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Clustering w.r.t. DecodeWidth
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BOOM-Explorer

Embed prior knowledge on TED — MicroAL

Algorithm 2 MicroAL(U, 1, b)

Require: I{ is the unsampled microarchitecture design space, p is a normalization coefficient, b is the number of
samples that to draw.
Ensure: X: the sampled set with |X| = b.
1: X « 0
2: initialize k clusters randomly with the centroids set C = {c1, c2, ..., ¢k } from U;
3: while not converged do

4: ¢ = argmin @ (x; —¢), Vx; €UY; > @ is the distance function considering DecodeWidth
je{1,2,... .k}
U] .
= W=
5: ¢ = ’5“7, vjie{1,2,..,k};
;1 1{c;i=j}
6: end while
7: C + neighborhood of ¢; € C, Vi € {1,2,...,k};
8: for K in C do
9: X =TED(K,pu, L)) > Algorithm 1

10 x=xU0x;
11: end for
12: return The sampled set X;

18/35



BOOM-Explorer

Black-box Model — DKL-GP

Feature vectors: X = {x1,x7, ...x,},
Corresponding power or clock cycles y = {y1,¥2, ..., Yn }-
Gaussian distributions can be constructed w.r.t. Equation (3),

f= (). f(x2), - f Gen)]" ~ N (12, Kxxio)- ®)

Given a newly sampled x.,, the predictive joint distribution f, can be obtained,

Kxxjo + 021 K
gy~ N N] ’ [ XX|0 e Xx. |6 |y 4
f |y ([M* I<Jc*X|0 kx*x*\e ) @
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BOOM-Explorer

Black-box Model — DKL-GP

k9(xi7xi) — kw,Q(SO(xiaw)’QD(xjaw)) (5)

Overview of DKL-GP
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BOOM-Explorer

Correlated Multi-Objective Problem

¢ Performance & Power dissipation.

¢ A naive objective functions:

L = a - Performance + (3 - Power (6)

¢ Limitations: Personal bias on o and 8.

PVoly, (PV)) = [ 1y = vedl— ] 1ly. #ylldy %
Y y.€P(Y)
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BOOM-Explorer
Correlated Multi-Objective Problem
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(a) Red circles: dominated microarchitectures, blue circles: currently explored Pareto-optimal set,
orange region: dominated by the Pareto-optimal set.
(b) Green circles: newly-explored Pareto microarchitecture. 22/35



BOOM-Explorer
Correlated Multi-Objective Problem

EIPV as our acquisition function:
EIPV(¥'|D) = Ey(s(xr) ) [PVOlo, (P(¥) Uf (+')) — PVolo,, (P(V))] ®)

Rephrase EIPV by decomposing the power-performance space as grid cells:

EIPV(x'|D) = ) / PVol,. (y)p(y, |D)dy )
CeECng
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BOOM-Explorer

End-to-end Flow

Algorithm 3 BOOM Explorer(D, T, i, b)

Require: D is the microarchitecture design space, T is the maximal iteration number, 1 is a normalization coeffi-
cient and b is the number of samples to draw.

Ensure: Pareto-optimal set X that forms Pareto optimality among D.

1: Xy < MicroAL(D, p, b);
2: Push X to VLSI flow to obtan corresonding power and clock cycles Y;
3: L« Xp;

4: U+ D\L;

5: fori=1+ Tdo
6.
7
8
9

> Algorithm 2

Establish and train DKL-GP on L with Y;

X4 < arg max EIPV(x|U);
xeU

Push x. to VLSI flow to obtain corresponding power and clock cycles and add to Y;

> Equation (9)

: L+ LUxy, U<+ U\xy;
10: end for
11: Construct Pareto-optimal set X from L;
12: return Pareto-optimal set X;
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Experiments

Experimental Setting

¢ Technology: ASAP7 PVT Cells [Vashishtha, Vangala, and Clark 2017]
¢ Scala environment: sbt v1.4.4

¢ Synthesis: Cadence Genus 18.12-e0121

RTL simulator: VCS M-2017.03

¢ Power measurer: PrimeTime PX R-2020.09-SP1
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Experiments

Experimental Setting

¢ Data: 994 RTL designs, running at 2GHz

® Representative Benchmarks: median, whetstone, mt-vvadd, mm

® ANN-based model [Ipek et al. 2006]

¢ Regression-based model [Lee and Brooks 2007]

® AdaBoost-based model [Li et al. 2016]

¢ The HLS-predictive model-based method [Liu, Lau, and Schafer 2019]
Traditional ML model: SVR, XGBoost, Random Forest
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Experiments

Evaluation Flow

Tool

PDK

Reports <h, .cc, v .a, .0

(:)
@
@
@

Tnputs Barstools

MacroCompiler

Jlef, .lib
, ete.

Synopsys .bin (ELF)
vCs

.vpd

Synopsys
Verdi
vpd2ved
W, .sdc, .sperf
v ved GTKWave

ved2saif

PrimeTime PX,

Evaluation Flow 28/35



Experiments

Pareto Optimal Set Comparison
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Experiments
Normalized Experimental Results

ADRS(T', Q) = % > min f(v,w) (10)
vyel’

Table: Normalized Experimental Results

Methodologies ‘ Normalized ADRS ‘ Normalized ORT *
SVR 0.2399 1.0000
Random Forest 0.2263 0.9763
XGBoost 0.2171 1.010
ASPLOS'06 [Ipek et al. 2006] 0.1948 0.9437
HPCA'07 [Lee and Brooks 2007] 0.1907 0.8544
DAC’16 [Li et al. 2016] 0.1473 3.0102
DAC’19 [Liu, Lau, and Schafer 2019] 0.1884 0.8973
BOOM-Explorer w/o MicroAL 0.1441 0.3307
BOOM-Explorer 0.1145 0.3556

* ORT: Overall Running Time
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Experiments

Pareto Design vs. Two-wide BOOM

Table: Comparison with a two-wide BOOM

Micro-architecture Design | Design Parameters | Average Power (unit: watts) | Average Clock Cycles
Two-wide BOOM ! | [4,16,32,12,4,8,2,2,64,80,64,1,2,1,16,16,4,2,8] | 6.0700 x 1072 | 74915.2963
Pareto Design | [4,16,16,8,2,8,2,2,32,64,64,1,3,1,24,24,8,4,8] | 5.8600 x 102 \ 73333.7407

[ Two-wide BOOM [___] Pareto Design
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Experiments

Pareto Design vs. Two-wide BOOM

® More hardware resources for LDQ and STQ.

¢ Larger associative sets and MSHR entries for D-Cache to alleviate access conflicts.

¢ Assign less resources for RAS and BTB — application driven.

® MicroAL: Embed prior knowledge on microarchitecture design.
¢ DKL-GP: A robust non-parametric black-box model.

¢ EIPV: A good design of acquisition function in achieving a trade-off between power
and performance.
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