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Introduction



ISA

• X86

• ARM

• RISC-V
: open-source & numerous designs

Microarchitecture

• An implementation of an ISA in a processor.

• It can affect the performance, power dissipation, area, and etc. of a processor.
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• Parametric among different modules.

• Cache structures
• Decoders
• Execution units
• Load and store unit
• Key buffers, queues & stacks
• etc.

• Discrete candidate values.

• They are important to performance, power and area (PPA) values.

Introduction
Parametric Microarchitecture Design

5/35



Related Work
In industry:

• Rely on engineering experience of CPU architects.

In academia:

• ANN-based model [Ïpek et al. 2006]

• Regression-based model [Lee and Brooks 2007]

• AdaBoost-based model [Li et al. 2016]
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Limitations
Industry solutions:

• Lacks scalability for newly emerged processors.

Academic solutions:

• Fail to embed prior knowledge of microarchitecture designs to algorithms.

• Lack discussions on striking a good balance between the performance and power
dissipation of a microarchitecture design.
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Table: Microarchitecture Design Space of BOOM

Module Component Descriptions Candidate Values

FrontEnd

FetchWidth Number of instructions the fetch unit can retrieve once 4, 8
FetchBufferEntry Entries of the fetch buffer register 8, 16, 24, 32, 35, 40

RasEntry Entries of the Return Address Stack (RAS) 16, 24, 32
BranchCount Entries of the Branch Target Buffer (BTB) 8, 12, 16, 20
ICacheWay Associate sets of L1 I-Cache 2, 4, 8
ICacheTLB Entries of Table Look-aside Buffer (TLB) in L1 I-Cache 8, 16, 32

ICacheFetchBytes Unit of line capacity that L1 I-Cache supports 2, 4

IDU

DecodeWidth Number of instructions the decoding unit can decode once 1, 2, 3, 4, 5
RobEntry Entries of the reorder buffer 32, 64, 96, 128, 130

IntPhyRegister Number of physical integer registers 48, 64, 80, 96, 112
FpPhyRegister Number of physical floating-point registers 48, 64, 80, 96, 112

EU
MemIssueWidth Number of memory-related instructions that can issue once 1, 2

IntIssueWidth Number of integer-related instructions that can issue once 1, 2, 3, 4, 5
FpIssueWidth Number of floating-point-related instructions that can issue once 1, 2

LSU

LDQEntry Entries of the Loading Queue (LDQ) 8, 16, 24, 32
STQEntry Entries of the Store Queue (STQ) 8, 16, 24, 32

DCacheWay Associate sets of L1 D-Cache 2, 4, 8
DCacheMSHR Entries of Miss Status Handling Register (MSHR) 2, 4, 8

DCacheTLB Entries of Table Look-aside Buffer (TLB) in L1 D-Cache 8, 16, 32
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Table: Constraints of BOOM design specifications

Rule Descriptions

1 FetchWdith ≥ DecodeWidth
2 RobEntry | DecodeWidth +

3 FetchBufferEntry > FetchWidth
4 FetchBufferEntry | DecodeWidth
5 fetchWidth = 2× ICacheFetchBytes
6 IntPhyRegister = FpPhyRegister
7 LDQEntry = STQEntry
8 MemIssueWidth = FpIssueWidth

+ The symbol “|” means RobEntry should be divisi-
ble by DecodeWidth
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Definition (Microarchitecture)
A combination of candidate values defined in Table 1.
A legal microarchitecture is encoded as a feature vector x ∈ D.

Definition (Power)
The power is to be defined as

P = Pdynamic + Pshort-circuit + Pleakage. (1)

Definition (Clock Cycle)

Clock cycles are consumed when a BOOM design runs a benchmark.

Preliminaries
Definitions
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Definition (Pareto Optimality)

An objective vector f (x) is said to be dominated by f (x′) in a n-dimensional space if

∀i ∈ [1,n], fi(x) ≤ fi(x′)
∃j ∈ [1,n], fj(x) < fj(x′)

(2)

and we denote x′ < x.
Pareto-optimal set is x ∈ D that are not dominated by any other.

0
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Visualization of Pareto Optimality
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Problem (BOOM Microarchitecture Design Space Exploration)

In the design space D, find a series of microarchitectures X that form the Pareto optimality among
power and performance Y ∈ Y .
Hence, Y = {y|y′ � y,∀y′ ∈ Y}, X = {x|f (x) ∈ Y,∀x ∈ D}.

Preliminaries
Problem Formulation
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Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on
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resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on
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Highlights

• Embed prior knowledge on
Transductive Experimental Design [Yu,
Bi, and Tresp 2006] – (MicroAL)

• Gaussian process with Deep Kernel
Learning (DKL-GP)

• Bayesian Optimization with
Expectation Improvement on Pareto
Hypervolume (EIPV)
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Clustering w.r.t. DecodeWidth

Algorithm 1 TED(U , µ, b)

Require: U is the unsampled microarchitecture design
space, µ is a normalization coefficient, and b is the
number of samples to draw.

Ensure: X : the sampled set with |X | = b.
1: X ← ∅, Kuu′ ← f (u, u′), ∀u, u′ ∈ U ;
2: for i = 1→ b do
3: x∗ ← arg max

x∈U
Tr[KUx(Kxx + µI)−1KxU ]; . KUx,

Kxx and KxU are calculated via f w.r.t. corresponding
columns in K

4: X ← X ∪ x∗, U ← U \ x∗;
5: K← K− KUx∗ (Kx∗x∗ + µI)−1Kx∗U ;
6: end for
7: return The sampled set X ;

BOOM-Explorer
Embed prior knowledge on TED – MicroAL
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Algorithm 2 MicroAL(U , µ, b)

Require: U is the unsampled microarchitecture design space, µ is a normalization coefficient, b is the number of
samples that to draw.

Ensure: X : the sampled set with |X | = b.
1: X ← ∅;
2: initialize k clusters randomly with the centroids set C = {c1, c2, ..., ck} from U ;
3: while not converged do
4: ci = arg min

j∈{1,2,...,k}
Φ (xi − cj), ∀xi ∈ U ; . Φ is the distance function considering DecodeWidth

5: cj =

|U|∑
i=1

1{ci=j}xi

|U|∑
i=1

1{ci=j}
, ∀j ∈ {1, 2, ..., k};

6: end while
7: C ← neighborhood of ci ∈ C, ∀i ∈ {1, 2, ..., k};
8: for K in C do
9: X̂ = TED(K, µ, b b

k c); . Algorithm 1
10: X = X〉 ∪ X̂ ;
11: end for
12: return The sampled set X ;

BOOM-Explorer
Embed prior knowledge on TED – MicroAL
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Gaussian Process (GP)
Feature vectors: X = {x1, x2, ...xn},
Corresponding power or clock cycles y = {y1, y2, ..., yn}.
Gaussian distributions can be constructed w.r.t. Equation (3),

f = [f (x1), f (x2), ...f (xn)]T ∼ N (µ,KXX|θ). (3)

Given a newly sampled x∗, the predictive joint distribution f∗ can be obtained,

f∗|y ∼ N (

[
µ
µ∗

]
,

[
KXX|θ + σ2

e I KXx∗|θ
Kx∗X|θ kx∗x∗|θ

]
). (4)

BOOM-Explorer
Black-box Model – DKL-GP
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Embed Deep Kernel Learning in GP [Wilson et al. 2016]

kθ(xi, xj)→ kw,θ(ϕ(xi,w), ϕ(xj,w)) (5)

…
…

…
…

…
…

Figure 1: (Left): Deep Gaussian Process illustration1. (Middle): Histograms of a random selection of
inducing outputs. The best-fit Gaussian distribution is denoted with a dashed line. Some of them
exhibit a clear multimodal behaviour. (Right): P-values for 100 randomly selected inducing outputs
per dataset. The null hypotheses are that their distributions are Gaussian.

resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
with the inverse covariance matrix. Instead, the posterior is approximated using a small set of pseudo
datapoints (⇠100) also referred to as inducing points [Snelson and Ghahramani, 2006, Titsias, 2009,
Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on

1Image source: Daniel Hernández-Lobato
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resulting in a Bayesian ‘self-tuning’ covariance function that fits the data without any human input
[Damianou, 2015].

The deep hierarchical generalization of GPs is done in a fully connected, feed-forward manner. The
outputs of the previous layer serve as an input to the next. However, a significant difference from
neural networks is that the layer outputs are probabilistic rather than exact values so the uncertainty is
propagated through the network. The left part of Figure 1 illustrates the concept with a single hidden
layer. The input to the hidden layer is the input data x and the output of the hidden layer f1 serves as
the input data to the output layer, which itself is formed by GPs.

Exact inference is infeasible in GPs for large datasets due to the high computational cost of working
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Quiñonero-Candela and Rasmussen, 2005]. We assume this inducing point framework throughout
the paper. Predictions are made using the inducing points to avoid computing the covariance matrix
of the whole dataset. Both in GPs and DGPs, the inducing outputs are treated as latent variables that
need to be marginalized.

The current state-of-the-art inference method in DGPs is Doubly Stochastic Variation Inference
(DSVI) [Salimbeni and Deisenroth, 2017] which has been shown to outperform Expectation Prop-
agation [Minka, 2001, Bui et al., 2016] and it also has better performance than Bayesian Neural
Networks with Probabilistic Backpropagation [Hernández-Lobato and Adams, 2015] and Bayesian
Neural Networks with earlier inference methods such as Variation Inference [Graves, 2011], Stochas-
tic Gradient Langevin Dynamics [Welling and Teh, 2011] and Hybrid Monte Carlo [Neal, 1993].
However, a drawback of DSVI is that it approximates the posterior distribution with a Gaussian. We
show, with high confidence, that the posterior distribution is non-Gaussian for every dataset that
we examine in this work. This finding motivates the use of inference methods with a more flexible
posterior approximations.

In this work, we apply an inference method new to DGPs, Stochastic Gradient Hamiltonian Monte
Carlo (SGHMC), a sampling method that accurately and efficiently captures the posterior distribution.
In order to apply a sampling-based inference method to DGPs, we have to tackle the problem of
optimizing the large number of hyperparameters. To address this problem, we propose Moving
Window Monte Carlo Expectation Maximization, a novel method for obtaining the Maximum
Likelihood (ML) estimate of the hyperparameters. This method is fast, efficient and generally
applicable to any probabilistic model and MCMC sampler.

One might expect a sampling method such as SGHMC to be more computationally intensive than a
variational method such as DSVI. However, in DGPs, sampling from the posterior is inexpensive,
since it does not require the recomputation of the inverse covariance matrix, which only depends on
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Our Target

• Performance & Power dissipation.

• A naive objective functions:

L = α · Performance + β · Power (6)

• Limitations: Personal bias on α and β.

Pareto Hypervolume [Shah and Ghahramani 2016]

PVolvref(P(Y)) =

∫
Y
1[y < vref][1−

∏
y∗∈P(Y)

1[y∗ � y]]dy (7)

BOOM-Explorer
Correlated Multi-Objective Problem
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(b)

(a) Red circles: dominated microarchitectures, blue circles: currently explored Pareto-optimal set,
orange region: dominated by the Pareto-optimal set.
(b) Green circles: newly-explored Pareto microarchitecture.
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Expected Improvement of Pareto Hypervolume (EIPV) as Acquisition
Function
[Shah and Ghahramani 2016]
EIPV as our acquisition function:

EIPV(x′|D) = Ep(f (x′)|D)[PVolvref(P(Y) ∪ f (x′))− PVolvref(P(Y))] (8)

Rephrase EIPV by decomposing the power-performance space as grid cells:

EIPV(x′|D) =
∑

C∈Cnd

∫
C

PVolvC(y)p(y, |D)dy (9)
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Algorithm 3 BOOM Explorer(D,T, µ, b)

Require: D is the microarchitecture design space, T is the maximal iteration number, µ is a normalization coeffi-
cient and b is the number of samples to draw.

Ensure: Pareto-optimal set X that forms Pareto optimality among D.
1: X0 ←MicroAL(D, µ, b); . Algorithm 2
2: Push X0 to VLSI flow to obtan corresonding power and clock cycles Y;
3: L← X0;
4: U← D \ L;
5: for i = 1← T do
6: Establish and train DKL-GP on L with Y;
7: x∗ ← arg max

x∈U
EIPV(x|U); . Equation (9)

8: Push x∗ to VLSI flow to obtain corresponding power and clock cycles and add to Y;
9: L← L ∪ x∗, U← U \ x∗;

10: end for
11: Construct Pareto-optimal set X from L;
12: return Pareto-optimal set X;

BOOM-Explorer
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Experiments



Tools

• Technology: ASAP7 PVT Cells [Vashishtha, Vangala, and Clark 2017]

• Scala environment: sbt v1.4.4

• Synthesis: Cadence Genus 18.12-e0121

• RTL simulator: VCS M-2017.03

• Power measurer: PrimeTime PX R-2020.09-SP1

Experiments
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Data

• Data: 994 RTL designs, running at 2GHz

• Representative Benchmarks: median, whetstone, mt-vvadd, mm

Baselines

• ANN-based model [Ïpek et al. 2006]

• Regression-based model [Lee and Brooks 2007]

• AdaBoost-based model [Li et al. 2016]

• The HLS-predictive model-based method [Liu, Lau, and Schafer 2019]

• Traditional ML model: SVR, XGBoost, Random Forest

Experiments
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Average distance to reference set (ADRS)

ADRS(Γ,Ω) =
1
|Γ|
∑
γ∈Γ

min
ω∈Ω

f (γ, ω) (10)

Table: Normalized Experimental Results

Methodologies Normalized ADRS Normalized ORT +

SVR 0.2399 1.0000
Random Forest 0.2263 0.9763

XGBoost 0.2171 1.010
ASPLOS’06 [Ïpek et al. 2006] 0.1948 0.9437

HPCA’07 [Lee and Brooks 2007] 0.1907 0.8544
DAC’16 [Li et al. 2016] 0.1473 3.0102

DAC’19 [Liu, Lau, and Schafer 2019] 0.1884 0.8973

BOOM-Explorer w/o MicroAL 0.1441 0.3307
BOOM-Explorer 0.1145 0.3556

+ ORT: Overall Running Time

Experiments
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Table: Comparison with a two-wide BOOM

Micro-architecture Design Design Parameters Average Power (unit: watts) Average Clock Cycles

Two-wide BOOM 1 [4, 16, 32, 12, 4, 8, 2, 2, 64, 80, 64, 1, 2, 1, 16, 16, 4, 2, 8] 6.0700× 10−2 74915.2963

Pareto Design [4, 16, 16, 8, 2, 8, 2, 2, 32, 64, 64, 1, 3, 1, 24, 24, 8, 4, 8] 5.8600× 10−2 73333.7407

m
m

m
ed

ian

m
t-v

vad
d

whets
to

ne

ad
d-in

t

ad
d-in

t+

ad
d-fp

ad
d-fp

+

bra
nch

bra
nch

+
std

io

std
io+

co
m

plex

fir2
dim iir

tar
ai cn

t

co
m

pres
s
co

ver
duff fac

in
se

rts
ort

m
atm

ult

m
in

ver ns st

rec
ursi

on
0.0

0.05

0.10

A
ve

.P
ow

er

Two-wide BOOM Pareto Design

m
m

m
ed

ian

m
t-v

vad
d

whets
to

ne

ad
d-in

t

ad
d-in

t+

ad
d-fp

ad
d-fp

+

bra
nch

bra
nch

+
std

io

std
io+

co
m

plex

fir2
dim iir

tar
ai cn

t

co
m

pres
s
co

ver
duff fac

in
se

rts
ort

m
atm

ult

m
in

ver ns st

rec
ursi

on
0.0

2.00

4.00

6.00

lo
g

2
A

ve
.C

lo
ck

C
yc

le
s

Pareto Design vs. Two-wide BOOM w.r.t. Power and Performance.

1Asanovic, Patterson, and C. Celio 2015

Experiments
Pareto Design vs. Two-wide BOOM

31/35



Why Pareto Design Performs Better?

• More hardware resources for LDQ and STQ.

• Larger associative sets and MSHR entries for D-Cache to alleviate access conflicts.

• Assign less resources for RAS and BTB→ application driven.

Why BOOM-Explorer is effective?

• MicroAL: Embed prior knowledge on microarchitecture design.

• DKL-GP: A robust non-parametric black-box model.

• EIPV: A good design of acquisition function in achieving a trade-off between power
and performance.
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THANK YOU!
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