
TreeNet: Deep Point Cloud Embedding for
Routing Tree Construction

Wei Li
The Chinese University of Hong Kong

Yuxiao Qu
The Chinese University of Hong Kong

Gengjie Chen
Giga Design Automation

Yuzhe Ma
The Chinese University of Hong Kong

Bei Yu
The Chinese University of Hong Kong

Abstract
In the routing tree construction, both wirelength (WL) and path-

length (PL) are of importance. Among all methods, PD-II and SALT
are the two most prominent ones. However, neither PD-II nor SALT
always dominates the other one in terms of both WL and PL for all
nets. In addition, estimating the best parameters for both algorithms
is still an open problem. In this paper, we model the pins of a net as
point cloud and formalize a set of special properties of such point
cloud. Considering these properties, we propose a novel deep neural
net architecture, TreeNet, to obtain the embedding of the point cloud.
Based on the obtained cloud embedding, an adaptive workflow is
designed for the routing tree construction. Experimental results show
that the proposed TreeNet is superior to other mainstream models
for the point cloud on classification tasks. Moreover, the proposed
adaptive workflow for the routing tree construction outperforms
SALT and PD-II in terms of both efficiency and effectiveness.

1 Introduction
In VLSI routing, wirelength (WL) and pathlength (PL) are the two

fundamental metrics for the routing tree construction. Here, WL is
directly related to power consumption, routing resource usage, cell
delay and wire delay. Meanwhile, a long PL from the root (i.e., the
source pin) implies high wire delay. However, optimizing either one
of them does not necessarily benefit the other one.

The minimization of WL and PL has been investigated for a long
history. Various approaches have been proposed to construct the
routing tree by optimizing both WL and PL. These approaches can be
roughly categorized into two types. The first type starts the construc-
tion from a tree that consists only of the source pin and iteratively
adds the node into the tree with a newly-added edge. The two most
influential and representative approaches of this type are the Prim-
Dijkstra (PD) [1] construction and its improved version PD-II [2]. The
second type [3–5] starts the construction from an initial topology
with small WL such as FLUTE [6], and iteratively finds and reroutes
the node whose PL is out of the bound. Among all the approaches
above, PD-II [2] and SALT [5] are the two most prominent ones
which demonstrate a superior trade-off between WL and PL com-
pared with other state-of-the-art approaches. However, neither PD-II
nor SALT always dominates the other one in terms of both WL and
PL for all nets. Specifically, given a maximal WL constraint, although
the PL of SALT is better than PD-II in most cases, there is still a
considerable proportion on which PD-II is better, especially when the
size of the net is large. The statistics shown in Table 2 demonstrate
such a phenomenon, where PD-II outperforms SALT in 10.4% of
huge nets when the WL degradation constraint is 0. Here the PL is
measured by the normalized PL. Besides the uncertainty of deciding
the best approach for any single case, there is another concern about

Embeddings in 2-D space Point clouds
source pin

x y
20 60
40 25
�

60 85
80 60

x y
75 35
10 40
�

85 20
85 70

x y
50 80
20 65
�

80 20
80 65

y

x

x

xy

y

sink pin

Figure 1: Cloud embeddings for tree construction, where
point clouds are transformed into unified 2-D Euclidean
space.

the best parameter in PD-II and SALT. Both PD-II and SALT use a
parameter to help decide whether one update should happen or not.
For example, α in PD-II is included in the cost function to balanceWL
and PL. Correspondingly, ϵ in SALT is used to decide whether one
node should be rerouted or not. Given any single case, i.e., a set of
pins, the estimation of the best parameter is still non-trivial and also
an open problem to achieve the best PL given one WL constraint.

The recent overwhelming success of deep learning applications in
various fields suggests that we can naturally cast the problems into
the classification task (approach selection) and the regression task
(parameter prediction). However, the set of 2-D points, which is the
original input of the tree construction and also called the point cloud,
usually varies in terms of the number of points, making it hard to
be fed into a learning model. Therefore, we first need to transform a
point cloud with unfixed size into a vector with a fixed size, where the
vector is also called cloud embedding. The cloud embedding should
be in a unified vector space with maximal representation capability
such that the cloud embedding can help us to determine the best
routing tree construction approach and predict the best parameter.
One example of the point clouds for the routing tree construction
and corresponding cloud embeddings are shown in Figure 1.

Although many works [7–10] adapt the powerful deep learning-
based methods for cloud embedding, none of them handles the point
cloud specifically for the tree construction quite well due to some
special properties in the tree construction. Through comprehensive
analysis and consideration of these properties, we propose a deep
learning-based model, TreeNet, to obtain the cloud embedding specif-
ically for the tree construction. The obtained cloud embedding is
then used as a representation to help select the best routing tree con-
struction approach and predict the best parameter for the selected
approach. Finally, we use the selected approach and corresponding
parameter to construct the routing tree. The main contributions are

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Wei Li, YuxiaoQu, Gengjie Chen, Yuzhe Ma, and Bei Yu

(a) (b) (c)

source pin
sink pin
steiner points

(d)

Figure 2: Examples of the down-sampling: (a) The general point cloud without the down-sampling; (b) The general point cloud
with the down-sampling; (c) The constructed tree without the down-sampling; (d) The constructed tree with the down-sampling.

summarized as follows: 1) We formalize special properties of the
point cloud for the routing tree construction; 2) We design TreeNet,
a novel deep net architecture to obtain the cloud embedding for
the tree construction; 3) We propose an adaptive flow for the rout-
ing tree construction, which uses the cloud embedding obtained by
TreeNet to select the best approach and predict the best parameter;
4) Experiments on widely used benchmarks and demonstrate the
effectiveness of our embedding representation, compared with all
other deep learning models; 5) Experimental results show that our
methods outperform other state-of-the-art routing tree construction
methods in terms of both quality and runtime.

2 Preliminaries
2.1 Routing Tree

The routing tree is constructed by a set of terminals. Assume
a input net V = {v0,Vs }, v0 is the source and Vs is the set of
sinks. Let G = {V ,E} be the connected weighted routing graph.
The edge weight ofG is the distance between vertices. A routing tree
T = {V ′,E ′} is a spanning/Steiner tree that is constructed from V
with v0 as the root. A Steiner tree inserts new points from V , i.e.,
V ′ ⊇ V , where the newly inserted points are called steiner points.
The objective of the routing tree is to minimize both WL and PL.
The WL metric is called the lightness or normalized WL, which is
computed by the WL ratio with that of minimum spanning tree

(MST), i.e., liдhtness =
w(T)

w(MST (G))
, where w(·) is the total weight.

The PL metric is controversial and there are two widely used met-
rics. The first one is called the shallowness [11], which is computed
by the maximal PL ratio with the shortest-path tree (SPT) among

all vertices, i.e., shallowness = max{
dT (v0,v)

dG (v0,v)
|v ∈ Vs }. The second

one is called the normalized path length [2], which is computed
by the total PL normalized by the total shortest-path distance, i.e.,

normPL =

∑
v ∈V dT (r ,v)∑
v ∈V dG (r ,v)

. Note that d(·) mentioned above denotes

as the Manhattan distance.

2.2 Point Cloud
Point Cloud is defined as a set of scattered points in a 2D plane

or 3D space. Therefore, the input of the routing tree construction,
i.e., a set of 2-D points, can be modeled as a point cloud. Typical
deep learning-based methods obtain the embedding of a general
point cloud by a similar philosophy of the convolution layer. The
convolution-like operation is usually composed of three procedures:
Sampling, Grouping and Encoding. Sampling selects a set
of centroids from the original point cloud. Grouping selects a set of
neighbors for each centroid, which is like the local region constrained

by a convolution kernel in the original convolution. Encoding is
to encode the new centroid feature using the original one and the
local feature aggregated from the neighbors of the centroid.

2.3 Problem Formulation
Given a set of 2-D pins and two routing tree construction algo-

rithms, SALT [11] and PD-II [2], our objective is to obtain the embed-
ding of the given point cloud by TreeNet such that 1) the embedding
can be used to select the best algorithms for the given point cloud; 2)
the embedding can be used to estimate the best parameter ϵ of SALT
for the given point cloud; 3) the embedding can be used to estimate
the best parameter α of PD-II for the given point cloud.

3 The Proposed Approaches
In this section, we first formalize a set of special properties of the

point cloud specifically for the routing tree construction. Then we
propose TreeNet for cloud embedding by considering these properties.
Finally, an adaptive workflow for the routing tree construction based
on the cloud embedding is introduced.

3.1 Property Analysis
Given the input net V = {v0,Vs }. Let f : V → T be the function

for routing tree construction and T is the target routing tree. Here,
we sayT = T ′ if and only ifT andT ′ have the same node coordinates
and the same topology. Ideally, a powerful neural network maps
nets with different (same) routing trees to embeddings which are as
different (similar) as possible. Therefore, we may design the cloud
embedding method by learning the behavior of f . 1

Property 1. Let d : V → V ′ be a function for down-sampling, where
V ′ is a proper subset of V . f (V) , f (d(V)) holds if there exists v ∈
V − d(V) so that v is not the steiner point in f (d(V)) .

Property 1 points the deficiency of down-sampling. Actually, the
inequality holds for most cases even without the condition. One
down-sampling example is shown in Figure 2. With down-sampling,
the skeleton of the general point cloud is still easy to classify as
shown in Figure 2(b). However, given the point cloud for the routing
tree construction, the routing tree with down-sampling (Figure 2(d))
is totally different from the one without down-sampling (Figure 2(c)).
Here,

Property 2. LetV p
s be the permutation of the sink setVs . f ({v0,V

p
s }) =

f ({v0,Vs }) holds for any V = {v0,Vs }.

Property 3. Let V p be the permutation of the input net V . f (V p) ,
f (V) holds if the source in V p is different from the source in V .

1Proofs of all properties are not shown here due to the page limit.

TreeNet: Deep Point Cloud Embedding for Routing Tree Construction ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

(a)

source pin
sink pin
steiner points

(b)

Figure 3: Examples of the routing trees with the same node
distribution but different root (highlighted by red).

A

D

C

B

(a)

AD

C

B

(b)

Figure 4: Examples of the nodewith the same coordinates and
local neighbors but different parent-child relationships. Here
root is highlighted in red.

(a) ball (b) k-nn (c) k-bbox (d) routing tree

Figure 5: Comparison among ball query (a) k-nn (b) and k-
bbox (c) groupingmethods (k = 2 in this example). The orange
regions represent the query ball in (a) and bounding boxes in
(c). The centroid is highlighted by black and the root is by red.

Property 2 shows the permutation invariance of the point cloud
and Property 3 states the sensitivity of the root. One example is
shown in Figure 3, where the space distributions of point locations
are totally the same while only the root is assigned differently. A
typical method may regard the two point clouds as a similar pair
while they actually represent completely different trees.

Property 4. For any sink setVs with |Vs | > 1, there exists two different
pins, v0 and v ′0 in the 2-D plane so that f ({v0,Vs }) , f ({v ′0,Vs }).
Moreover, the inequality holds when we only consider the topology.

As an extension of Property 3, Property 4 states the possible in-
equality even when the sink setVs is not changed. It not only demon-
strates the sensitivity of the root, but also shows the deficiency of
only considering local information, i.e, information stored inVs . One
example is shown in Figure 4, where the node B in both Figure 4(a)
and Figure 4(b) have the same coordinates and local neighbors (C,D)
but the parent-child relationships B−C and B−D are clearly different.

Property 5. Let Gball , Gknn and Gbbox be the graph constructed
fromV by ball query, k nearest neighbor and bounding box respectively.
The minimum spanning tree, T may not be the subgraph of Gball or
Gnn , but always the subgraph of Gbbox .

Property 5 states that Gbbox [2] is more likely to capture the
structure of the routing tree, compared toGball [8] andGknn [9, 10].

K
-b

bo
x

gr
ou

pi
ng

Lo
ca

l i
nf

or
m

at
io

n
G

lo
ba

l i
nf

or
m

at
io

n

C
on

ca
t

 c
on

v

M
ax

SE
 b

lo
ck

Figure 6: Illustration of TreeConv. Brighter blocks indicate
Grouping and darker blocks indicate Encoding.

Gbbox is the graph whose nodes are connected with their bbox-
neighbors. We call the nodeuj as the bbox-neighbor ofui if there is no
other node in the smallest bounding box containing ui and uj . One
example of the comparison is shown in Figure 5,Gball andGknn fail
to find the correct neighbors of the selected centroid.

3.2 Cloud embedding by TreeNet
Considering all these properties discussed above, we propose a spe-

cialized model, TreeNet, to obtain the embedding of the point cloud
for the routing tree construction. Basically, TreeNet is a hierarchical
model and composed of a number of convolution-like operations.
We refer to this operation as TreeConv. The comparison between
TreeConv and other methods [7–10] are summarized in Table 1.

Our TreeConv (see Figure 6) leverages the local correlation infor-
mation and the root informationwith two key procedures:Grouping
and Encoding. Different from some typical works, TreeConv omits
the Sampling phase considering Property 1. Therefore, each node
is selected as the centroid. Given a point cloud H ∈ RN×D , where
N is the number of points and D is the dimension of each point,
our Grouping selects k neighbors for each centroid ui to represent
the local point cloud structure based on Gbbox [2]. One example
is shown in Figure 5(c). We first select k nearest bbox-neighbors
of ui as the neighbors. If the number of bbox-neighbors for ui is
less than k , we then select other nearest nodes to fill up k neigh-
bors. Therefore, Grouping returns a list of neighbors Ei ∈ Rk
for each centroid ui . After Grouping, our Encoding outputs a
new feature v ′i ∈ R

D′ for each node ui such that the new point
cloud H ′ = {v ′0, ...,v

′
N−1} ∈ R

N×D′ . For each element v ′ic in v ′i ,
our Encoding leverages the global position information [7], the
"local" neighborhood information [9, 10], and the root information
considering Property 4. The computation can be formulated as:

v ′ic = max
j ∈Ei

σ (θc · CONCAT(vi −vj ,vi −vr ,vi)), (1)

where vr is the input feature of the root, σ is the LeakyReLU ac-
tivation function and θc ∈ R3D is the trainable weight of cth filter.
Finally, the new feature v ′i is processed by a Squeeze-and-Excitation
(SE) block [12] for exploiting channel dependencies.

The network architecture used for the cloud embedding is shown
in Figure 7. The input of the first layer is the point cloudH0 ∈ RN×2,
in which each node has a 2-D normalized coordinate feature. The
normalization of each node ui is based on the root ur (Property 3,
Property 4) and can be formulated as:

ṽi =
vi −vr
dmax

, (2)

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Wei Li, YuxiaoQu, Gengjie Chen, Yuzhe Ma, and Bei Yu

Tr
ee

C
on

v

Tr
ee

C
on

v

Tr
ee

C
on

v

Tr
ee

C
on

v

M
A

X
 &

 M
EA

N

+
N

or
m

al
iz

at
io

n

Figure 7: Illustration of TreeNet Architecture for the cloud
embedding.

SALT selector

Confidence > b?

SALT

PD-II

Point cloud

Y

N

SALT parameter
predictor

PD-II parmeter
predictor

TreeNet

Figure 8: The workflow of our framework. Dotted arrows rep-
resent that TreeNet generates cloud embeddings anduse them
to select the algorithm or to predict parameters. The yellow
blocks are executed in our frameworkwhile the purple blocks
are executed by the selected algorithms.

wherevi is the original 2-D coordinate feature of node ui andvr is
the feature of the root. dmax is the maximal distance between the
root and any other nodes.

We stack four TreeConvs and include shortcut connections from
each layer to the output to extract multi-scale features which are
finally concatenated. Then, two permutation-invariant operations
(Property 2), max pooling and average pooling, are used to get the
cloud embedding, which can be formulated as

Hc = CONCAT(max(CONCAT(H̃1, H̃2, H̃3, H̃4)),

mean(CONCAT(H̃1, H̃2, H̃3, H̃4))),
(3)

where Hc ∈ R
2×(D1+D2+D3+D4) is the final cloud embedding and

H̃i ∈ R
N×Di is the scaled output of ith TreeConv.

3.3 Routing Tree Construction based on Point
Cloud Embedding

Given the cloud embeddingHc ∈ R
D obtained by TreeNet, we can

cast the algorithm selection and the parameter prediction problem
into classification and regression problem, respectively. Theworkflow
of our framework is shown in Figure 8.

Firstly, we use the obtained cloud embedding to determinewhether
the SALT algorithm is at least as good as the PD-II algorithm, where
"good" means that the best PL of SALT is at least the same as that of
PD-II under the givenWL constraint and the PLmetric. Therefore, the
problem can be regarded as a 2-class classification problem,where one
class indicates that the result of SALT is at least as good as PD-II while
another one indicates its opposite. Given the cloud embedding Hc ∈

RD , the 2-class classifier is implemented by three fully connected
layers followed by a softmax layer and can be formulated as:

y = softmax(W3σ (W2σ (W1Hc + b1) + b2)), (4)

where σ is the LeakyReLU activation function,Wi and bi are the
weight matrix and bias vector, respectively. y ∈ R2 is the final classi-
fication confidence. Since each wrong selection directly harms the
quality of the result, we raise the bar to select SALT algorithm: We

Algorithm 1 ParameterGuidanceConstruction
Input: ϵ → Predicted parameter;
Input: f → Routing tree construction algorithm;
1: r esults ← Run f using the parameters in (ϵ − σ , ϵ + σ) ∪ S ;
2: if no result in r esults satisfies the WL constraint then
3: return ParameterGuidanceConstruction(ϵ + 2σ , f);
4: else
5: return the result with the best PL in r esults satisfying the WL

constraint under the PL metric;
6: end if

directly use SALT algorithm to construct the routing tree only when
the confidence of "SALT is at least as good as PD-II" is larger than
a specified confidence bar b. Otherwise, we will use both SALT and
PD-II to construct the routing tree and use the better result.

After algorithm selection, corresponding parameter is predicted
by the obtained cloud embedding and guides the parameter selection.
The regression target of the parameter prediction is the "best" param-
eter, where "best" means the result using such parameter achieves
the best PL under the WL degradation constraint. We follow a similar
approach used in the age prediction [13]. Take the parameter predic-
tion of SALT for example. We set 20 valid parameter ϵi , i ∈ {1, ..., 20}
candidates for SALT and each valid parameter is treated as a separate
class. Therefore, the structure for the parameter prediction is similar
with the one for the algorithm selection formulated in Equation (4)
with y ∈ R20. Given the output y, the predictied parameter ϵ is
calculated by an element-wise summation and can be formulated as:

ϵ =
20∑
i=1

ϵi · yi . (5)

Given the predicted parameter, the guidance follows a simple but
effective heuristic rule specified in Algorithm 1. Generally speaking,
the selected approach constructs the routing tree using the predicted
parameter and other parameters in a set (line 1), where σ and S are
hyper-parameters. S defines an initial set of parameters that achieve
almost the best PL while also almost the worst WL. If the results
of all tested parameters fail to satisfy the WL constraint, the range
is widened along the direction which decreases the WL (line 2-3);
Otherwise, we directly use the best parameter among these tested
candidates (line 4-5).

4 Experimental Results
We implement TreeNet in Python with PyTorch. Other models

(PointNet [7], PointNet++ [8], PointCNN [10], DGCNN [9]) are also
implemented. The results of SALT [5] are generated by the source
code and the results of PD-II [2] are provided by the authors. The
experiments are conducted on the widely used benchmarks of ICCAD
2015 Contest [14]. All the two-pin and three-pin nets are removed.
All the experiments are conducted on an Intel Core 2.9 GHz Linux
machine with one NVIDIA TITAN Xp GPUs.

Data Preparation.We first assign labels to each net in the bench-
marks according to the routing tree results of SALT and PD-II. Specifi-
cally, given the constraint of WL degradation percentage with respect
to MST WL and the PL metric type (the shallowness metric and the
normalized PL metric), the net is assigned three labels: 1) best algo-
rithm; 2) best ϵ for SALT and 3) best α for PD-II. The best algorithm
is labeled as one of {SALT , PDII }. Here, the net is labeled as SALT
(PDII) when the routing tree by SALT (PD-II) achieves the best PL

TreeNet: Deep Point Cloud Embedding for Routing Tree Construction ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 1: Comparison to existing methods.
Sampling Grouping Encoding

PointNet [7] - - v ′ic = σ (θcvi)
PointNet++ [8] Fathest Point Sampling (FPS) ball query’s local neighborhood v ′ic = maxj ∈Ei σ (θcvj)

PointCNN [10] Random/FPS k nearest neighbor v ′i = Conv(X × θ (vi −vj))

DGCNN [9] - k nearest neighbor v ′ic = maxj ∈Ei σ (θc · CONCAT(vi −vj ,vi)),

Our work - k bounding box neighbor v ′ic = maxj ∈Ei σ (θc · CONCAT(vi −vj ,vi −vr ,vi)),

Table 2: ICCAD 2015 Benchmark Label Statistics (part)
WL deg. PL metric Label Small Med. Large Huge Total

0 Nor. PL SALT 99.9% 98.8% 93.5% 89.6% 1273012 (98.3%)
PD-II 0.1% 1.2% 6.5% 10.4% 21529 (1.7%)

0 Shallow. SALT 99.9% 99.1% 95.6% 93.1% 1279428 (98.8%)
PD-II 0.1% 0.9% 4.4% 6.9% 15113 (1.2%)

10% Shallow. SALT 99.8% 97.0% 93.6% 91.4% 1269095 (98.0%)
PD-II 0.2% 3.0% 6.4% 8.6% 25446 (2.0%)

under the chosen PL metric and the WL degradation constraint. Es-
pecially, if both SALT and PD-II construct the same routing tree, the
best algorithm is labeled as SALT . The best ϵ for SALT is defined by:

ȳi =

{
1
k , if ϵi is one of the “best” candidates;
0, otherwise.

(6)

where k is the number of those "best" candidates, i ∈ {1, ..., 20} and
ϵi = 0.05 × 1.5i as defined in [5]. Similarly, the best α for PD-II also
follows Equation (6) with i ∈ {1, ..., 19} and αi = 0.05 · i as defined in
[2]. Note that, increasing the number of data points also improves the
quality of our model since the noise label is reduced. Given such label
rules, the label distribution of nets in the benchmarks are clearly
different based on the WL degradation constraint and PL metric
type. A part of the best algorithm label statistics for the benchmarks
is shown in Table 2, where "WL deg." denotes the percentages of
permissible WL degradation with respect to MST WL.

Architecture. The output point dimension of four TreeConvs is
(32, 32, 64, 128) and such the final embedding dimension is (32+ 32+
64 + 128) × 2 = 512. Then, three fully connected layers (128, 64, c)
are used, where c is the number of classes in the label. Dropout is
applied and the keep probability is set to 0.5. The number of selected
neighbors k is set to 3, which is the maximal neighbor number for
a 4-point net. The confidence bar b is set as 0.99. The range σ in
Algorithm 1 is set to 1 for SALT and -1 for PD-II. The set S is set to
{1,2} in SALT and {18,19} in PD-II.

Training & Testing. During training, we minimize the binary
cross-entropy loss for the algorithm selection and the soft cross-
entropy loss for the parameter prediction. We use SGD with an ini-
tial learning rate 0.001 and momentum 0.9, and the learning rate
is reduced by 30% every 20 epochs. We follow the idea of K-fold
cross-validation to set up the test. Specifically, each design in the
benchmark is tested using the model trained by other designs follow-
ing the same configurations.

4.1 Comparison with other DL models
In this section, we compare TreeNet with other baseline models

for the algorithm selection task. Due to the page limit, the result of
the parameter prediction task is not shown since it is also formulated
as a classification task. The WL degradation is set as 5% and the PL
metric is set as the normalized PL. Formally, we mark the SALT label
as positive and the PDII as negative.

The result for the algorithm selection is shown in Table 3, where
"Accuracy" and "Precision" are defined as usual. "Recall∗" is slightly
different and defined as the fraction of the total amount of positive
instances that were also predicted as positive with the confidence
larger than the bar b. Therefore, the updated recall is directly re-
lated to the runtime performance. We use SALT to construct the
routing tree for the predicted positive instances, and use both SALT
and PD-II for the predicted negative instances. We compare four
state-of-the-art models with our TreeNet and three variations: 1)
Remove the root-sensitive normalization and use the original normal-
ization (property 1); 2) Remove the root-related global information
in Encoding phase (property 3, 4); 3) Use k-nn grouping method
instead of k-bbox (property 5). According to Table 3, we can see that
our TreeNet outperforms other state-of-the-art models on all three
metrics. Besides, the comparison with other variations demonstrates
the effectiveness of our considerations on the properties of the point
cloud for the tree construction.

4.2 Comparison with routing tree constructors
In this section, we compare our adaptive workflow with SALT and

PD-II in terms of both effectiveness and efficiency.
Effectiveness: We follow the same result comparison way in [2]:

We first select different WL degradation constraints (0%, 5%, 10%, 15%,
20%) and then find the best shallowness and the normalized PL. Each
entry in the table is the averaged shallowness (see Table 4) and the
averaged normalized PL (see Table 5) across all test nets. Especially,
SALT∗ executes SALT in a binary search manner, which results
in better efficiency but may harm the quality. We also measure the
improvement comparedwith SALT (Imp. (%)) and SALT∗ (Imp.∗ (%)).
The improvement is calculated by the percentage improvement after
subtracting the lower bound 1. For example, a reduction from 1.10 to
1.09 results in an improvement of 10%, i.e., (1 − (1.09 − 1.0)/(1.10 −
1.0)) · 100%. As Table 4 and Table 5 show, our adaptive workflow
outperforms SALT and PD-II for all classes of nets under all WL
constraints and PL metrics. In general, the overall improvement over
SALT ranges from 1.97% to 12.16%, depending on the selected WL
constraint and PL metric. The improvement over SALT∗ is more
significant, ranging from 2.89% to 19.11%.

Efficiency: Since the source code of PD-II is not provided, we
only compare the runtime performance of our adaptive workflow
with SALT [5]. The runtime of our framework is composed of three
parts: 1) The inference time of TreeNet; 2) The execution time of
SALT on the input net; 3) The execution time of PD-II on the input
net when the algorithm selector does not select SALT as the only tree
constructor. Especially, the execution time of PD-II is estimated form
the runtime analysis in [2], where PD-II costs 361s and SALT costs
2762s. Therefore, we estimate the runtime of PD-II by SALT with a
runtime ratio 361/2762 = 0.1307. Figure 9 shows the average runtime
comparison with SALT and SALT∗, where adaptive workflow is more
efficient than both of them on any size scale. We further profile the

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Wei Li, YuxiaoQu, Gengjie Chen, Yuzhe Ma, and Bei Yu

Table 3: Algorithm selection results
Method Accuracy Precision Recall∗
PointNet [7] 54.13 53.95 1.91
PointNet++ [8] 81.31 82.50 2.65
PointCNN [10] 62.18 64.24 1.16
DGCNN [9] 92.24 94.62 11.84
TreeNet w.o. Nor 87.22 88.62 15.69
TreeNet w.o. global 92.40 94.63 25.53
TreeNet w. knn 92.58 94.79 26.76
TreeNet 94.09 95.38 50.74

Small Med. Large Huge All
0
1

5

10

Ti
m
e
(m

s)

SALT [5]
SALT ∗

Ours

Figure 9: Runtime comparison with SALT
and SALT∗.

Table 4: On shallowness

|V| Method WL deg.
0% 5% 10% 15% 20%

Small

PD-II 1.0606 1.0369 1.0240 1.0161 1.0114
SALT 1.0462 1.0216 1.0078 1.0022 1.0006
SALT∗ 1.0462 1.0216 1.0079 1.0023 1.0006
Ours 1.0461 1.0210 1.0074 1.0021 1.0005

Imp. (%) 0.28 2.62 4.40 5.42 8.25
Imp.∗ (%) 0.32 3.04 5.14 6.75 9.94

Med.

PD-II 1.3849 1.2518 1.1688 1.1176 1.0851
SALT 1.3456 1.1775 1.0838 1.0391 1.0181
SALT∗ 1.3463 1.1815 1.0868 1.0410 1.0192
Ours 1.3435 1.1689 1.0790 1.0370 1.0172

Imp. (%) 0.62 4.85 5.72 5.57 5.41
Imp.∗ (%) 0.80 6.95 8.98 9.92 10.41

Large

PD-II 1.9093 1.5584 1.3595 1.2473 1.1805
SALT 1.7976 1.3549 1.1568 1.0727 1.0358
SALT∗ 1.8083 1.3689 1.1648 1.0771 1.0382
Ours 1.7755 1.3339 1.1481 1.0690 1.0341

Imp. (%) 2.77 5.91 5.53 5.11 4.78
Imp.∗ (%) 4.06 9.50 10.12 10.52 10.77

Huge

PD-II 2.1660 1.7169 1.4771 1.3438 1.2603
SALT 2.0111 1.4398 1.2083 1.0987 1.0466
SALT∗ 2.0291 1.4567 1.2183 1.1039 1.0489
Ours 1.9793 1.4152 1.1975 1.0941 1.0444

Imp. (%) 3.15 5.61 5.17 4.69 4.64
Imp.∗ (%) 4.85 9.09 9.50 9.47 9.20

All

PD-II 1.2921 1.1822 1.1193 1.0827 1.0604
SALT 1.2531 1.1175 1.0524 1.0236 1.0110
SALT∗ 1.2555 1.1210 1.0546 1.0248 1.0117
Ours 1.2481 1.1114 1.0495 1.0223 1.0104

Imp. (%) 1.97 5.18 5.43 5.21 5.08
Imp.∗ (%) 2.89 7.98 9.23 9.95 10.38

Table 5: On normalized PL

|V| Method WL deg.
0% 5% 10% 15% 20%

Small

PD-II 1.0156 1.0099 1.0065 1.0044 1.0031
SALT 1.0113 1.0055 1.0020 1.0006 1.0002
SALT∗ 1.0113 1.0055 1.0020 1.0006 1.0002
Ours 1.0112 1.0053 1.0019 1.0005 1.0001

Imp. (%) 0.25 2.86 4.88 6.57 10.55
Imp.∗ (%) 0.29 3.38 5.83 8.29 12.75

Med.

PD-II 1.0897 1.0579 1.0373 1.0248 1.0170
SALT 1.0778 1.0428 1.0204 1.0096 1.0044
SALT∗ 1.0780 1.0440 1.0214 1.0102 1.0048
Ours 1.0773 1.0396 1.0185 1.0086 1.0040

Imp. (%) 0.63 7.35 9.45 10.01 10.00
Imp.∗ (%) 0.82 9.90 13.70 15.74 16.65

Large

PD-II 1.1968 1.1146 1.0671 1.0413 1.0267
SALT 1.1665 1.0815 1.0365 1.0172 1.0086
SALT∗ 1.1690 1.0854 1.0390 1.0187 1.0095
Ours 1.1616 1.0726 1.0318 1.0150 1.0076

Imp. (%) 2.95 10.92 12.81 12.91 12.49
Imp.∗ (%) 4.35 15.02 18.29 19.70 20.35

Huge

PD-II 1.2472 1.1415 1.0830 1.0513 1.0328
SALT 1.2120 1.1054 1.0489 1.0224 1.0105
SALT∗ 1.2160 1.1106 1.0522 1.0242 1.0112
Ours 1.2045 1.0917 1.0413 1.0190 1.0088

Imp. (%) 3.54 13.03 15.54 15.54 16.25
Imp.∗ (%) 5.31 17.12 20.97 21.52 21.87

All

PD-II 1.0658 1.0398 1.0244 1.0157 1.0105
SALT 1.0550 1.0278 1.0125 1.0056 1.0026
SALT∗ 1.0555 1.0289 1.0132 1.0061 1.0029
Ours 1.0538 1.0253 1.0111 1.0050 1.0023

Imp. (%) 2.05 9.17 11.35 11.94 12.16
Imp.∗ (%) 3.01 12.43 16.04 17.98 19.11

58.46%

40.05%

1.05%

(a) Small

23.04%

69.83%

7.13%

(b) Med.

11.13%

75.97%

12.9%

(c) Large

14.09%

68.44%

17.47%

(d) Huge

24.39%

TreeNet Inference

65.94%

SALT

9.67%

PD-II

(e) All

Figure 10: Runtime breakdown of our framework.

runtime of the framework, as shown in Figure 10. The inference time
of TreeNet only occupies 24.39% of the total runtime.

5 Conclusion

In this work, we design a novel deep net architecture, TreeNet, to
consider special properties of the point cloud for the tree construction.
TreeNet is used to obtain the cloud embedding. Then, we propose
an adaptive workflow to construct the routing tree based on the
cloud embedding obtained by TreeNet. The results show that our
TreeNet is far stronger than other deep learning-based models and
the proposed framework achieves superior trade-off between WL
and PL with less runtime, compared with the state-of-the-art routing
tree construction methods.

Acknowledgment

This work is partially supported by The Research Grants Council
of Hong Kong SAR (No. CUHK14209420).

References
[1] C. J. Alpert, T. Hu, J. Huang, A. B. Kahng, and D. Karger, “Prim-Dijkstra tradeoffs for

improved performance-driven routing tree design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 14, no. 7, pp. 890–896, 1995.

[2] C. J. Alpert, W.-K. Chow, K. Han, A. B. Kahng, Z. Li, D. Liu, and S. Venkatesh,
“Prim-Dijkstra revisited: Achieving superior timing-driven routing trees,” in ACM
International Symposium on Physical Design, 2018, pp. 10–17.

[3] M. Elkin and S. Solomon, “Steiner shallow-light trees are exponentially lighter than
spanning ones,” in IEEE Symposium on Foundations of Computer Science, 2011, pp.
373–382.

[4] R. Scheifele, “Steiner trees with bounded RC-delay,” Algorithmica, vol. 78, no. 1, pp.
86–109, 2017.

[5] G. Chen and E. F. Young, “Salt: provably good routing topology by a novel steiner
shallow-light tree algorithm,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2019.

[6] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear Steiner minimal
tree algorithm for VLSI design,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 1, pp. 70–83, 2008.

[7] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 652–660.

[8] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space,” inAdvances in neural information processing systems,
2017, pp. 5099–5108.

[9] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic
graph cnn for learning on point clouds,” ACM Transactions on Graphics (TOG),
vol. 38, no. 5, pp. 1–12, 2019.

[10] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x-
transformed points,” in Advances in neural information processing systems, 2018, pp.
820–830.

[11] G. Chen, P. Tu, and E. F. Young, “SALT: provably good routing topology by a novel
Steiner shallow-light tree algorithm,” in IEEE/ACM International Conference on
Computer-Aided Design, 2017, pp. 569–576.

[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.

[13] J. M. Schwarz, D. N. Cooper, M. Schuelke, and D. Seelow, “Mutationtaster2: mutation
prediction for the deep-sequencing age,” Nature methods, vol. 11, no. 4, pp. 361–362,
2014.

[14] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD Contest in incre-
mental timing-driven placement and benchmark suite,” in IEEE/ACM International
Conference on Computer-Aided Design, 2015, pp. 921–926.

