Chapter

Software Reliability and
System Reliability

Jean-Claude Laprie and Karama Kanoun
LAAS-CNRS, Toulouse, France

2.1 Introduction

This chapter is mainly aimed at showing that, by using deliberately
simple mathematics, the classical reliability theory can be extended in
order to be interpreted from both hardware and software viewpoints.
This is referred to as X-ware [Lapr89, Lapr92b] throughout this chap-
ter. It will be shown that, even though the action mechanisms of the
various classes of faults may be different from a physical viewpoint
according to their causes, a single formulation can be used from the
reliability modeling and statistical estimation viewpoints. A single for-
mulation has several advantages, both theoretical and practical, such
as (1) easier and more consistent modeling of hardware-software sys-
tems and of hardware—software interactions, (2) adaptability of models
for hardware dependability to software systems and vice versa, and (3)
mathematical tractability.

Section 2.2 gives a general overview of the dependability concepts.
Section 2.3 is devoted to the failure behavior of an X-ware system, dis-
regarding the effect of restoration actions (the quantities of interest
are thus the time to the next failure or the associated failure rate), con-
sidering in turn atomic systems and systems made up of components.
In Sec. 2.4, we deal with the behavior of an X-ware system with service
restoration, focusing on the characterization of the sequence of the
times to failure (i.e., the failure process); the measures of interest are
thus the failure intensity, reliability, and availability. Section 2.5 out-
lines the state of art in dependability evaluation and specification.
Finally, Sec. 2.6 summarizes the results obtained.

27

28 Technical Foundations

2.2 The Dependability Concept

2.2.1 Basic definitions

The basic definitions for dependability impairments, means, and
attributes are given in Fig. 2.1, and the main characteristics of depend-
ability are summarized in the form of a tree as shown in Fig. 2.2
[Lapr92a, Lapr93].

2.2.2 On the impairments to dependability

Of primary importance are the impairments to dependability, as we have
to know what we are faced with. The creation and manifestation mecha-
nisms of faults, errors, and failures may be summarized as follows:

1. A fault is active when it produces an error. An active fault is either
an internal fault previously dormant and activated by the computa-
tion process or an external fault. Most internal faults cycle between
their dormant and active states. Physical faults can directly affect
the hardware components only, whereas human-made faults may
affect any component.

2. An error may be latent or detected. An error is latent when it has not
been recognized as such; an error is detected by a detection algo-
rithm or mechanism. An error may disappear before being detected.
An error may, and in general does, propagate; by propagating, an
error creates other—new—error(s). During operation, the presence
of active faults is determined only by the detection of errors.

3. A failure occurs when an error passes through the system-user
interface and affects the service delivered by the system. A compo-
nent failure results in a fault (1) for the system which contains the
component and (2) as viewed by the other component(s) with which
it interacts; the failure modes of the failed component then become
fault types for the components interacting with it.

Some examples illustrative of fault pathology:

s The result of a programmer’s error is a (dormant) fault in the written
software (faulty instruction(s) or data); upon activation (invoking the
component where the fault resides and triggering the faulty instruc-
tion, instruction sequence, or data by an appropriate input pattern)
the fault becomes active and produces an error; if and when the erro-
neous data affect the delivered service (in value and/or in the timing
of their delivery), a failure occurs.

s A short circuit occurring in an integrated circuit is a failure. The con-
sequence (connection stuck at a boolean value, modification of the

Software Reliability and System Reliability 29

Dependability is defined as the trustworthiness of a computer system such that
reliance can justifiably be placed on the service it delivers. The service delivered by a
system is its behavior as it is perceptible by its user(s); a user is another system
(human or physical) interacting with the former.

Depending on the application(s) intended for the system, a different emphasis may
be put on the various facets of dependability, that is, dependability may be viewed
according to different, but complementary, properties, which enable the aitributes of
dependability to be defined:

m The readiness for usage leads to availability.
m The continuity of service leads to reliability.

w The nonoccurrence of catastrophic consequences on the environment leads to
safety.

® The nonoccurrence of the unauthorized disclosure of information leads to confi-
dentiality.

m The nonoccurrence of improper alterations of information leads to integrity.

m The ability to undergo repairs and evolutions leads to maintainability.

Associating availability and integrity with respect to authorized actions, together
with confidentiality, leads to security.

A system failure occurs when the delivered service deviates from fulfilling the
system’s function, the latter being what the system is intended for. An error is that
part of the system state which is liable to lead to subsequent failure: an error affect-
ing the service is an indication that a failure occurs or has occurred. The adjudged or
hypothesized cause of an error is a fault.

The develocpment of a dependable computing system calls for the combined utiliza-
tion of a set of methods and techniques which can be classed into:

= Fault prevention: how to prevent fault occurrence or introduction.
8 Fault removal: how to reduce the presence (number, seriousness) of faults.

m Fault tolerance: how to ensure a service capable of fulfilling the system’s func-
tion in the presence of faults.

s Fault forecasting: how to estimate the present number, future incidence, and
consequences of faults.

The notions introduced can be grouped into three classes:

® The impairiments to dependability: faults, errors, failures; they are undesired—
but not in principle unexpected—circumstances causing or resulting from unde-
pendability (whose definition is very simply derived from the definition of
dependability: reliance cannot or will no longer be placed on the service).

The means for dependability: fault prevention, fault removal, fault tolerance,
fault forecasting; these are the methods and techniques enabling one (1) to provide
the ability to deliver a service on which reliance can be placed and (2) to reach con-
fidence in this ability.

m The attributes of dependability: availability, reliability, safety, confidentiality,
integrity, maintainability; these attributes (1) enable the properties which are
expected from the system to be expressed and (2) allow the system quality result-
ing from the impairments and the means opposing them to be assessed.

Figure 2.1 Dependability basic definitions.

30 Technical Foundations

— AVAILABILITY

— RELIABILITY

— SAFETY

- CONFIDENTIALITY
. INTEGRITY

L. MAINTAINABILITY

— ATTRIBUTES —

— FAULT PREVENTION
- FAULT REMOVAL

— FAULT TOLERANCE
L. FAULT FORECASTING

FAULTS
— [MPAIRMENTS ——E ERRORS
FAILURES

DEPENDABILITY ——— MEANS ————

Figure 2.2 The dependability tree.

circuit function, etc.) is a fault which will remain dormant as long as
it has not been activated, the continuation of the process being iden-
tical to that of the previous example.

m An inappropriate human-machine interaction performed by an
operator during the operation of the system is a fault (from the sys-
tem viewpoint); the resulting altered processed data is an error.

® A maintenance or operating manual writer’s error may result in a
fault in the corresponding manual (faulty directives) which will
remain dormant as long as the directives are not acted upon in order
to deal with a given situation.

Figure 2.3 summarizes the fault classification; the upper part indi-
cates the viewpoint according to which they are classified, and the lower
part gives the likely combinations according to these viewpoints, as well
as the usual labeling of these combinations—not their definition.

It is noteworthy that the very notion of fault is arbitrary, and in fact
a facility provided for stopping the recursion induced by the causal
relationship between fauilts, errors, and failures—hence the definition
given: adjudged or hypothesized cause of an error. This cause may vary
depending upon the viewpoint chosen: fault tolerance mechanisms,
maintenance engineers, repair shop, developer, semiconductor physi-
cist, ete. In fact, a fault is nothing other than the consequence of a fail-
ure of some other system (including the developér) that has delivered or
is now delivering a service to the given system. A computing system is a
human artifact and, as such, any fault in it or affecting it is ultimately
human-made since it represents the human inability to master all the
phenomena which govern the behavior of a system. Going further, any
fault can be viewed as a permanent design fault. This is indeed true in

Software Reliability and System Reliability 31

FAULTS
NATURE PHENOMENOLOGICAL SYSTEM PHASE PERSISTENCE

/ \ C;SE\ B;JNDQIES ; CREQ'ION / \

ACCIDENTAL INTENTIONAL PHYSIGAL HUMAN INTERNAL EXTERNAL DESIGN OPERATION PEAMANENT TEMPCRARY

| I | |
_' : ¢ * . PHYSICAL
I | I | | = FAULTS
— ™ . - []
I ! I I TRANSIENT
— N * . — FAULTS
| | |
- : * . *=1 INTERMITTENT
[| []—FAULTS
—— L] [] *
— I. . | ! . DESIGN FAULTS
| | INTERACTION
—_ . . . o— FAULTS
!
N M . . . MALICIOUS
| I |] _I— LoGic
. b " L] *
I I
. . M . .
I | I | _I_ INTRUSIONS
L] [3 * » L]
[] [1 1 1 :

Figure 2.3 Fault classes.

an absolute sense, but not very helpful for system developers and
assessors; hence the usefulness of the various fault classes when con-
sidering the (current) methods and techniques for procuring and vali-
dating dependability.

A system may not, and generally does not, always fail in the same
way. The ways a system can fail are its failure modes. These can be
characterized according to three viewpoints as shown in Fig. 2.4.

Given below are two additional comments regarding the words, or
labels, fault, error, and failure:

FAI LU RES
PERCEPT ION
DOMAIN BY SEVERAL CONSEQUENCES

USERS ON ENVIRONMENT

/N N\ /N

VALUE TIMING CONSISTENT INCONSISTENT BENIGN CATASTROPHIC
(BYZANTINE)

Figure 2.4 Failure classification.

32 Technical Foundations

1. Their exclusive use in this book (except Chap. 9) does not preclude
the use in special situations of words which designate, briefly and
unambiguously, a specific class of impairment; this is especially
applicable to faults (e.g., bug, defect, deficiency, flaw) and to failures
(e.g., breakdown, malfunction, denial of service).

2. The assignment of the particular terms fault, error, and failure sim-
ply takes into account current usage: (1) fault prevention, tolerance,
and diagnosis, (2) error detection and correction, and (3) failure rate.

2.2.3 On the attributes of dependability

The definition given for integrity—the avoidance of improper alter-
ations of information—generalizes the usual definitions (e.g., preven-
tion of unauthorized amendment or deletion of information [EEC91] or
ensuring approved alteration of data [Jaco91]) which are directly
related to a specific class of faults, that is, intentional faults (deliber-
ately malevolent actions). Our definition encompasses accidental
faults as well (i.e., faults appearing or created fortuitously), and the
use of the word information is intended to avoid being limited strictly
to data: integrity of programs is also an essential concern; regarding
accidental faults, error recovery is indeed aimed at restoring the sys-
tem’s integrity.

Confidentiality, not security, has been introduced as a basic attribute
of dependability. Security is usually defined (see e.g., [EEC91]) as the
combination of confidentiality, integrity, and availability, where the
three notions are understood with respect to unauthorized actions. A
definition of security encompassing the three aspects of [EEC91] is: the
prevention of unauthorized access and/or handling of information;
security issues are indeed dominated by intentional faults, but not
restricted to them: an accidental (e.g., physical) fault can cause an
unexpected leakage of information.

The definition given for maintainability—ability to undergo repairs
and evolutions—deliberately goes beyond corrective maintenance,
which relates to repairability only. Evolvability clearly relates to the
two other forms of maintenance, that is, (1) adaptive maintenance,
which adjusts the system to environmental changes and (2) perfective
maintenance, which improves the system’s function by responding to
customer- and designer-defined changes. The frontier between repair-
ability and evolvability is not always clear, however (for instance, if the
requested change is aimed at fixing a specification fault [Ghez91]).
Maintainability actually conditions dependability when considering
the whole operational life of a system: systems which do not undergo
adaptive or perfective maintenance are likely to be exceptions.

Software Reliability and System Reliability 33

The properties allowing the dependability attributes to be defined
may be emphasized to a greater or lesser extent depending on the
application intended for the computer system concerned. For instance,
availability is always required (although to a varying degree, depend-
ing on the application), whereas reliability, safety, and confidentiality
may or may not be required according to the application. The varia-
tions in the emphasis to be put on the attributes of dependability have
a direct influence on the appropriate balance of the means to be
employed for the resulting system to be dependable. This problem is all
the more difficult to address because certain attributes are antagonis-
tic (e.g., availability and safety, availability and confidentiality), and
call for tradeoffs. Given the three main design dimensions of a com-
puter system (i.e., cost, performance and dependability), the problem is
further exacerbated by the fact that the dependability dimension is not
so well mastered as the cost-performance design space [Siew92].

2.2.4 On the means for dependability

All the how-tos which appear in the basic definitions given in Fig. 2.1
are in fact goals which cannot be fully reached, as all the corresponding
activities are carried out by humans and therefore are prone to imper-
fections. These imperfections bring in dependencies which explain why
it is only the combined utilization of the above methods-——preferably at
each step in the design and implementation process—that can best
lead to a dependable computing system. These dependencies can be
sketched as follows: despite fault prevention by means of design
methodologies and construction rules (imperfect so as to be workable),
faults are created—hence the need for fault removal. Fault removal
itself is imperfect, just like all of the off-the-shelf system components—
hardware or software—hence the importance of fault forecasting. Our
increasing dependence on computing systems brings in the require-
ment for fault tolerance, which in turn is based on construction rules—
hence fault removal, fault forecasting, etc. It must be noted that the
process is even more recursive than it appears from the above: current
computer systems are so complex that their design and implementa-
tion need computerized tools in order to be cost-effective (in a broad
sense, including the capability of succeeding within an acceptable time
scale). In turn, these tools themselves have to be dependable.

The preceding reasoning illustrates the close interactions between
fault removal and fault forecasting and supports their gathering into
the single term validation. This is despite the fact that validation is
often limited to fault removal and associated with one of the main
activities involved in fault removal: verification (e.g., in “V and V”
[Boeh79]). In such a case the distinction is related to the difference

34 Technical Foundations

between “building the system right” related to verification and “build-
ing the right system” related to validation.* What is proposed here is
simply an extension of this concept: the answer to the question “am I
building the right system?” (fault removal) being complemented by the
additional question “how long will it be right?” (fault forecasting). In
addition, fault removal is usually closely associated with fault preven-
tion, together forming fault avoidance, that is, how to aim at a fault-
free system. Besides highlighting the need for validating the
procedures and mechanisms of fault tolerance, considering fault
removal and fault forecasting as two constituents of the same activ-
ity—validation—is of great interest, as it leads to a better understand-
ing of the notion of coverage, and thus of the important problem
introduced by the above recursion: the validation of the validation, or
how to reach confidence in the methods and tools used in building con-
fidence in the system. Here coverage refers to a measure of the repre-
sentativity of the situations to which the system is submitted during
its validation compared to the actual situations it will be confronted
with during its operational life.” Imperfect coverage strengthens the
relation between fault removal and fault forecasting, as it can be con-
sidered that the need for fault forecasting stems from an imperfect cov-
erage of fault removal.

The life of a system is perceived by its user(s) as an alternation
between two states of the delivered service with respect to the specifi-
cation:

m Correct service, where the delivered service fulfills the system
function?

® Incorrect service, where the delivered service does not fulfill the sys-
tem function

A failure is thus a transition from a correct to an incorrect service,
while the transition from an incorrect service to a correct one is a
restoration. Quantifying the correct-incorrect service alternation

* It is noteworthy that these assignments are sometimes reversed, as in the field of
communication protocols (see, for example, [Rudi85}).

t The notion of coverage as defined here is very general; it may be made more precise
by indicating its field of application; e.g.,

= Coverage of a software test with respect to its text, control graph, etc.

a Coverage of an integrated circuit test with respect to a fault model

m Coverage of fault tolerance with respect to a class of faults

m Coverage of a design assumption with respect to reality

* We deliberately restrict the use of correct to the service delivered by a system, and do

not use it for the system itself: in our opinion, nonfaulty systems hardly ever exist, there
are only systems which have not yet failed.

Software Reliability and System Reliability 35

enables reliability and availability to be defined as measures of
dependability:

» Reliability. A measure of the continuous delivery of the correct ser-
vice—or, equivalently, of the ¢ime to failure.

" Availability. A measure of the delivery of correct service with
respect to the alternation of correct and incorrect service.

As a measure, safety can be viewed as an extension of reliability. Let
us group together the state of a correct service with that of an incorrect
service subsequent to benign failures into a safe state (in the sense of
being free from catastrophic damage, not from danger); safety is then a
measure of continuous safeness, or equivalently, of the time to catas-
trophic failure. Safety can thus be considered as reliability with respect
to the catastrophic failures

For multiperforming systems, several services can be distinguished,
together with several modes of service delivery, ranging from full
capacity to complete disruption, which can be seen as distinguishing
less and less correct service deliveries. The performance-related mea-
sures of dependability for such systems are usually referred to as per-
formability [Meye78, Smit88].

2.3 Failure Behavior of an X-ware System

Section 2.3.1 characterizes the behavior of atomic systems: discrete-
and continuous-time reliability expressions are derived. The behavior
of systems made up of components is addressed in Sec. 2.3.2, where
structural models of a system according to different types of relations
are first derived, enabling a precise definition of the notion of inter-
preter; behavior of single-interpreter and of multi-interpreter systems
are then successively considered.

2.3.1 Atomic systems

The simplest functional model of a system is regarded as performing a
mapping of its input domain 7 into its output space O.

An execution run of the system consists of selecting a sequence of
Input points. A trajectory in the input domain—not necessarily com-
posed of contiguous points—can be associated with such a sequence.
Thus, each element in 7 is mapped to a unique element in O if it is
assumed that the state variables are considered as part of I and/or O.

According to Sec. 2.2.2, a system failure may result from:

m The activation of a fault internal to the system, previously dormant;
an internal fault may be a physical or design fault.

36 Technical Foundations

s The occurrence of an external fault, originating from either the phys-
ical or the human environment of the system.

Two subspaces in the input space can thus be identified:

» [;, subspace of the faulty inputs

m I, subspace of the inputs activating internal faults

The failure domain of the system is Iy = Iy U L. When the input tra-
jectory meets I, an error occurs which leads to failure.

Thus, at each selection of an input point, there is a nonzero probabil-
ity for the system to fail. Let p be this probability, assumed identical for
the time being whatever the input point selected:

p = Plsystem failure at an input point selection |
no failure at the previous input point selections}

Let R (k) be the probability of no system failure during an execution
run comprising % input point selections. We then have

Ryk)=(1-p)f (2.1)

where R (k) is the discrete-time system reliability.

Let ¢, be the execution duration associated with an input selection; £,
is supposed for the moment to be identical irrespective of the input
point selected. Let ¢ denote the time elapsed since the start of execu-
tion: t = kt..

The notion of (isolated) input points is not very well suited for a num-
ber of situations, such as control systems, executive software, and
hardware. Thus, let us assume that there exists a finite limit for p/t.
when £, becomes vanishingly small. Let A be this limit:

7L=lim£

te—0 te

It turns out that the distribution becomes the exponential distri-
bution:

R(t) =lim Ry(k) = exp () (2.2)

where R(t) is the continuous-time system reliability, and A is its failure
rate.

Let us now relax the identity assumption of p and ¢, with respect to
the input point selections; let the following be defined

Software Reliability and System Reliability 37

p(j) = P{system failure at the jth input point selection |
no failure at the previous input point selections}
t.(j) = execution duration associated with the jth input selection

We then obtain

k kR

: . N ()
- 1- = . =1 LARES
Ru(k) J]]l[pN ,;”J) M= lim S
k
Ryk) =[] {1 -0 () +olt(NI} (2.3)
i=1

14
R@= lim Rk)=exp (— [dr)
Equation (2.3) is nothing other than the general expression of a sys-
tem’s reliability: see App. B (Sec. B.2), which describes the reliability
theory in detail.

It could be argued that the preceding formulations are in fact better
suited to design faults or to external faults than to physical faults,
since they are based on the existence of a failure domain, which may be
nonexistent with respect to physical faults as long as no hardware com-
ponent fails. It should be remembered that, from the point of view of
physics reliability, there is no sudden, unpredictable failure. In fact, a
hardware failure is due to anomalies (errors) at the electronic level,
caused by physicochemical defects (faults). Or to put it differently,
there are no fault-free systems—either hardware or software—there
are only systems which have not yet failed. However, the notion of oper-
ational fault (i.e., which develops during system operation, and thus
did not exist at the start of operational life) is—although arbitrarily
[Lapr92al-—a convenient and usual notion. Incorporating the notion of
operational fault in the previous formulation can be done as follows.
Let j, be the number of input point selections such that p(j) = 0 for
J <Jo, p(j) = p for j > j,, and u(j,) the associated probability, i.e., u(j,) =
P{p(.]) = O,J <J09p(.]) zp:j 2.]-0}-

The expression of discrete-time reliability becomes:

k k
RykY= > (1-pF-ru(jy)with > u(jy)=1
Jo=0 Jo=0

Going through the same steps as before, we get: R(¢) = lim,,_,, Ry(k) =
exp (—AL).

38 Technical Foundations

What precedes shows that, although the action mechanisms of the
various classes of faults may be different from a physical viewpoint
according to their causes, a single formulation can be used from a prob-
ability: modeling perspective. This formulation applies whatever the
fault class considered, either internal or external, physical or design-
induced. In the case of software, randomness results, at least from the
trajectory in the input space that will activate the fault(s). In addition,
it is now known that most of the software faults still present in opera-
tion, after validation, are “soft” faults, in the sense that their activation
conditions are extremely difficult to reproduce, hence the difficulty of
diagnosing and removing them,* which adds to the randomness.

The constancy of the conditional failure probability at execution with
respect to the execution sequence is directly related to the constancy of
the failure rate with respect to time, as evidenced by Eqs. (2.1) to (2.3).
In other words, the points of an input trajectory are not correlated with
respect to the failure process. This statement is all the more likely to be
true if the failure probability is low, i.e., if the quality of the system is
high, and thus applies more to systems in operational life than to those
under development and validation. It is an abstraction, however, thus
immediately raising the question of how well this abstraction reflects
reality.

As far as hardware is concerned, it has been long shown that (see, for
example, [Cart70]) the failure rates of electronic components as esti-
mated from experimental data actually decrease with time—even after
the period of infant mortality. However, the decrease is generally low
enough to be neglected. Going further, the interpretation of the failure
data for satellites, as described in [Hech87], establishes a distinction
between (1) stable operating conditions where the failure rate is slowly
decreasing (namely, a constant failure rate is a satisfactory assump-
tion) and (2) varying operating conditions leading to failure rates sig-
nificantly decreasing with time.

Similar phenomena have been noticed concerning software: (1) con-
stant failure rates for given, stable, operating conditions [Nage82] and
(2) high influence of system load [Cast81]. Also, a series of experimen-
tal studies conducted on computing systems have confirmed the signif-
icant influence of the system load on both hardware and software
failure processes [Iyer82].

The influence of varying operating conditions can be introduced by
considering that both the input trajectory and the failure domain Iy

* By way of example, a large survey was conducted on Tandem systems [Gray86]. From
the examination of several dozens of spooler error logs, it was concluded that only one
software fault out of 132 was not a soft fault.

Software Reliability and System Reliability 39

may be subject to variations. The variation of the failure domain
deserves some comments. It may be due to two phenomena [Iyer82b}:

1. Accumulation of physical faults which remain dormant under low

load conditions and are progressively activated as the load increases
[Meye88].

2. Creation of temporary faults resulting from the presence of seldom-
occurring combinations of conditions. Examples are (1) pattern-
sensitive faults in semiconductor memories, change in parameters of
a hardware component (effect of temperature variation, delay in
timing due to parasitic capacitance, etc.) or (2) situations occurring
when system load rises beyond a certain threshold, such as marginal
timing and synchronization. The latter situation may affect software
as well as hardware: the notion of temporary faults—especially
intermittent faults—also applies to software [Gray86]. Experimen-
tal work [McCo79] has shown that the failure rates relative to tem-
porary faults decrease significantly with time.

From a probabilistic viewpoint, the fallure probability at execution
in discrete time, or the failure rate in continuous time, may be consid-
ered as random variables. The system reliability then results from the
mixture of two distributions:

1. In discrete time, the distribution of the number of nonfailed execu-
tions in given operating conditions, thus with a given, constant, fail-
ure probability at execution, and the distribution of the probability
of failure at execution.

2. In continuous time, the distribution of the time to failure with a
given, constant, failure rate, and the distribution of the failure rate.

Let g4(p) and g,(A) be the probability density functions of the distri-
butions of the probability of failure at execution and of the failure rate,

which may take G values relative to the realizations p, i=1,...,G, of
p,and A, i = , G, of A. The expression of discrete-time reliability
becomes

Ryk)= Z (1 -p)* gu(ps)

i=1

Going through similar steps as before, we obtain

G
t=k > tegdp) A=lim P i=1,....G

i=1 tei0 Ly

40 Technical Foundations

where ¢, and A; are the execution time and the failure rate, respec-
tively, for executions carried out under operating conditionz, i =1, ...,
G. Finally we get

R(®) = Jim Ryk)= Z g4(M) exp (-2, £)

i=1

This is the mixed exponential distribution.
When p is a continuqus random variable with density function g.(p),
or A is a continuous random variable with density function g.(1), we get

1 o
R (k)= L (1- p)k g.(p)dp R@) = L exp (-At) g.(A) dh

From the properties of the mixture of distributions (see, for example,
[Barl75]), the system failure rate is nonincreasing with time, whatever
the distributions g, and g..

A model is of no use without data. This is where statistics come into
play. Let M instances of the system be considered, executed indepen-
dently. The term independently is a keyword in the following. This is a
conventional assumption with respect to physical faults when several
sets of hardware are run in parallel, supplied with the same input pat-
tern sequences. Of course, this approach cannot be transposed to soft-
ware. The independence of the executions of several systems means
that they are supplied with independent input sequences. This reflects
operational conditions when considering a base of deployed systems;
for instance, the input sequences supplied to the same text-processing
software by users in different places performing completely different
activities are likely to exhibit 1ndependence with respect to residual
fault activation.

Let M(k) and M(¢) be the number of nonfailed instances after % exe-
cutions of each instance, and after an elapsed time of ¢, respectively,
since the start of the experiment (M(0) = M); an instance failing at
the jth execution, j =1, ..., k, or at time 1, T € [0, £], is no longer exe-
cuted. The 1ndependency of execution of the various instances enable
these executions to be considered as Bernoulli trials, and the discrete-
time reliability is thus Rk) = E[M(k)}/M(0), and the continuous- time
rehab1l1ty is R(t) = E[M()//M(0). These equations are none other than
the basic equations for the statistical interpretation of reliability as
stated in the general systems reliability theory (e.g., [Shoo73, Kozl70]).
Statistical estimators of Rd(k) and R(¢) are then: R (k) = M(2)YM(0) and
R(t) = M(t)/M(0).

The preceding shows that the equations forming the core of the sta-
tistical estimation of reliability for a set of hardware systems apply

Software Reliability and System Reliability 41

equally to software systems, provided the experimental conditions are
in agreement with the underlying assumptions.

2.3.2 Systems made up of components

2.3.21 System models. Adopting the spirit of [Ande81], a system may
be viewed from a structural viewpoint as a set of components bound
together in order to interact; a component itself is a system, decom-
posed (again) into components, etc. The recursion ends when a system
is considered atomic: no further internal structure can be discerned or
is of interest, and can be ignored. The model corresponding to the rela-
tion “is composed of” is a tree, whose nodes are the components; the lev-
els of a tree obviously constitute a hierarchy. Such a model does not
enable the interactions between the components to be represented: the
presence of arcs in a graphic representation would present only the
relation “is composed of” existing between a node and the set of its
immediate successors. The set of the elements of a level of the tree
gives only the list of the system components, with more or less detail
according to the tree level considered: the lower the level, the more
detailed the list becomes. To obtain a more representative view of the
system, the relations existing between the components have to be pre-
sented. This is achieved through interaction diagrams where the nodes
are the system components and the arcs represent a common interface.
An arc exists when two elements can interact. Although the relation
“interacts with” is an essential relation when describing a system, it
obviously does not infer any hierarchy.

The use of the relations in modeling a system is given in Fig. 2.5 for
an intentionally simple system, where the components S;, S,, and S,
can, for instance, be the application software, the executive software,
and the hardware.

The respective roles of a system and of its user(s) with respect to the
notion of service are fixed: the system is the producer of the service,
and the user is the consumer. Therefore, there exists a natural hierar-
chy between the system and its user: the user uses the service of (or
delivered by) the system.

With respect to the set of components of one given level of the decom-
position tree, the relation “uses the service of”—a special form of the
relation “interacts with”—allows for an accurate definition of a special
class of components: if and only if all the components of the level may be
hierarchically situated through the relation “uses the service,” then
they are layers. Or equivalently, components of a given detail level are
layers (1) if any two components of that level play a fixed role with
respect to this relation, i.e., either consumer or producer; similarly, (2) if
the graph of the relation is a single branch tree. Conversely, if their

42 Technical Foundations

S

i i i

S Sa2
| l
|S14| |521| |822| |323| |531| [332| Saa Sa4 Sas
(a)

1

— S21 S23 -

BYEEA
(b)

Figure 25 Components of a system. (¢) System model according to the relation “is com-
posed of” (b) System model according to the relation “interacts with.”

respective consumer and producer roles can change, or if their interac-
tions are not governed by such a relation, they are simply components.
It is noteworthy that the notion of service has naturally—and implic-
itly—been generalized with respect to the layers: the service delivered
by a given layer is its behavior as perceived by the upper layer, where
the term upper has to be understood with respect to the relation “uses
the serviee of” Also worth noting is the fact that the relation “uses the
service of” induces an ordering of the time scales of the various layers:
time granularity usually does not decrease with increasing layers. Con-
sidering the previous example in Fig. 2.5 leads to the model in Fig. 2.6.

Structuring into many layers may be considered for design purposes.
Their actual relationship at execution is generally different: compila-
tion removes—at least partially—the structuring, and several layers
may, and generally are, executed on a single one. A third type of rela-

S 1

@sa

System model according to the relation «uses the service of»

Figure 2.6 Layers of a system.

Software Reliability and System Reliability 43

tion thus has to be considered: “is interpreted by.” The interpretive
interface {Ande81] between two layers or sets of layers is characterized
by the provision of objects and operations to manipulate those objects.
A system may then be viewed as a hierarchy of interpreters, where a
given interpreter may be viewed as providing a concrete representa-
tion of abstract objects in the above interpreter; this concrete repre-
sentation is itself an abstract object for the interpreter beneath the
considered one.

Considering again the previous example, the hardware layer inter-
prets the application as well as the executive software layers. However,
the executive software may be viewed as an extension of the hardware
interpreter—e.g., through (1) the provision of “supervisor call” instruc-
tions or (2) the prevention of invoking certain “privileged” instructions.
This leads to the system model depicted in Fig. 2.7.

Finally, note that the expression “abstraction level” has not been
used so as to avoid any confusion: all the hierarchies defined are,
strictly speaking, abstractions.

23.22 Behavior of a single-interpreter system. A system is assumed to
be composed of C' components, of respective failure rates A, i =1, . . .,
C. The system behavior with respect to the execution process is mod-
eled through a Markov chain with the following parameters:

= S: number of the states of the chain, a state being defined by the com-
ponents .under execution

® 1/y;: mean sojourn time in statej, j=1,...,8

m g, =P{system makes a transition from state j to state & | start or end
of execution of one or several components},j=1,...,S k=1,...,S,
P qr=1

A system failure is caused by the failure of any of its components.
The system failure rate §; in state j is thus the sum of the failure rates
of the components under execution in this state, denoted by

C
&= z dihj=1,...,8 (2.4)
i=1
S
Interpretive System model according to

the relation «is interpreted by»

interfaces
S,

Figure 2.7 System interpreters.

44 Technical Foundations

where §,; is equal to 1 if component i is under execution in state j, or
else it is equal to O.

The system failure behavior may be modeled by a Markov chain with
S + 1 states, where the system delivers correct service in the first S
states (components are under execution without failure occurrence);
state S + 1 is the failure state, which is an absorbing state. Let A = [a;],
j=1,...,8 k=1,...,8S be the transition matrix associated with the
nonfailed states. This matrix is such that its diagonal terms a; are
equal to —(y, + &), and its nondiagonal terms a;, j # k, are equal to g; ;.
The matrix A may be viewed as the sum of two matrices A’ and A” such
that: (1) the diagonal terms of A’ are equal to —y;, its nondiagonal terms
being equal to ¢; 7, and (2) the diagonal terms of A” are equal to -, its
nondiagonal terms being equal to 0.

The system behavior can thus be viewed as resulting from the super-
imposition of two processes: the execution process, of parameters y; and
g; (transition matrix A’), and the failure process, governed by the fail-
ure rates &; (transition matrix A”).

A natural assumption is that the failure rates are small with respect
to the rates governing the transitions from the execution process or,
equivalently, that a large number of transitions resulting from the exe-
cution process will take place before the occurrence of a failure—a sys-
tem that would not satisfy this assumption would be of little interest in
practice. This assumption is expressed as follows: y; >> &;.

Adopting a Markov approach for modeling the system behavior
resulting from the compound execution-failure process is based on this
assumption. Similar models have been proposed in the past for soft-
ware systems [Litt81, Cheu80, Lapr84], with less generality than here,
however, since those models assumed a sequential execution (one com-
ponent only executed at a time).*

By definition, the system failure rate A(¢) is given by

ME) = }d}n(l) ?il_ Pffailure between ¢ and ¢ + d¢ |
0 at no failure between initial instant and ¢}

* In these references, the Markov approach was justified:

» Heuristically in [Cheu80, Lapr84], by analogy with performance models in the first
reference, and with availability models in the second,

s From a weaker assumption, semi-Markov, in [Litt81]. It is shown there that the com-
pound process of execution and failure converges toward a Poisson process, and that
the contribution of the distribution functions of the component execution times is
limited to their first moments.

Software Reliability and System Reliability 45

Let Pj(¢) denote the probability for the system to be in state J. 1t fol-
lows that

s
(_Z 3 P,-(t))
M) = ~L=

The consequence of the assumption vy, >> & is that the execution pro-
cess converges toward equilibrium before failure occurrence. The vec-
tor o = [oy] of the equilibrium probabilities is the solution of ¢t - A’ = o,
with 37, a; = 1. Thus, P(¢) converges towards o; before failure oecurs,
and Eq. (2.5) becomes*: ‘

(2.5)

S
A= 2 g, (2.6)

Jj=1

Equation (2.6) may be rewritten as follows, to account for Eq. (2.4):

s c C 8
A= Otjz 611‘]'7\42 z ?\.IZ SiJaj 2.7
ji=1 i=1 i=1 j=1
Let
S
I, = Z SiJ oy
i=1
Equation (2.6) becomes
c
A= D> WA (2.8)
i=1

This equation has a simple physical interpretation:

® o, represents the average proportion of time spent in state j in the
absence of failure; thus m; is the average proportion of time when

* Another approach to this result is as follows. A given system component will be exe-
cuted; thus the transition graph between the nonfailed states is strongly connected. As a
result, the matrix A is irreducible and has one real negative eigenvalue whose absolute
value ¢ is lower than the absolute values of the real parts of the other eigenvalues
[Page80]. Asymptotically, the system failure behavior is then a Poisson process of rate G.
In our case, the asymptotic behavior is relative to the execution process; therefore, (1) it
is reached rapidly and (2) ¢ = A, thus system reliability is: R(t) = exp(—Az).

46 Technical Foundations

component i is under execution in the absence of failure. It is note-
worthy that the sum of the n/s can be larger than 1:

C
0< > msC
i=1

m), is the failure rate of component i assuming a continuous execution.

The term =, A; can therefore be considered as the equivalent failure rate
of component i.

Equation (2.8) deserves a few comments. First let us consider hard-
ware systems. It is generally considered that all components are con-
tinuously active. This corresponds to making all the w’s equal to 1,
leading to the usual equation

Consider software systems. The key question is how to estimate the
component failure rates. There are two basic—and opposite—
approaches: (1) exploiting results of repetitive-run experiments with-
out experiencing failures (i.e., through statistical testing [Curr86,
Thev91]) and (2) exploiting failure data using a reliability growth
model, the latter being applied to each software component, as per-
formed in [Kano87, Kano91a, Kano93bl. It is important to stress the
data representativeness in either approach; a condition is that the data
are collected in a representative environment (i.e., being relative to
components in interaction, real or simulated, with the other system
components). If this condition is not fulfilled, a distinction has to be
made between the interface failure rates (characterizing the failures
occurring during interactions with other components) and the internal
component failure rates, as in [Litt81], where the expression of a com-
ponent failure rate has the form ‘ :

hi=Gi+% 2,y Py
J

the {; being the internal component failure rates and p; the interface
failure probabilities. This leads to a complexity in the estimation of the
order of C? instead of C. _ L

An important question is how to account for different environments.
If this question is interpreted as estimating the reliability of a software
system of a base of deployed software systems, then the approach indi-
cated in Sec. 2.3.1 where the failure rate was considered as a random
variable can be extended here; the s being considered as ;‘andom

Software Reliability and System Reliability 47

variables as well. Another interpretation of the previous question is:
knowing the reliability in a given environment, how can the reliability
be estimated in another environment? Let us consider sequential soft-
ware systems. The parameters characterizing the execution process
are then defined as follows:

® 1/y;: mean execution time of componenti,i=1,...,C.

mg,= P{ component _] starts execution | end of execution of component
ih,i=1 ,Cj=1,...,C X5 q5=

The Markov chain modeling the compound execution-failure process is
a (C + 1) state chain, state i being defined by the execution of compo-
nent i, and the n;s reduce to the o;’s (in the case of sequential software,
d; = 1 and all others are zeros). We have A, =p, v, i =1, . ..,C, where p;
is the failure probability at execution of component i; hence

C C
A= Z Y Pi = Z N; o (2.9)
i=1 i=1

where 1; = T; v, is the visit rate of state i at equilibrium. The n’s have a
simple physical interpretation, as 1/, is the mean recurrence time of
state i (i.e., the mean time duration between two executions of compo-
nent i in the absence of failure). Equation (2.9) is of interest as it
enables a distinction to be made between (1) continuous time—execu-
tion process and (2) discrete time-failure process conditioned upon
execution. If the p;’s are intrinsic to the considered software and inde-
pendent of the execution process, then it is possible to infer the soft-
ware failure rate for a given environment from the knowledge of the
n;’s for this environment and the knowledge of the p;’s. The condition
for this assumption to be verified in practice is that it is possible to find
a suitable decomposition into components: the notion of component for
a softwdre is highly arbitrary, and the higher the number of compo-
nents considered for a given software, the smaller the state space of
each component, so the higher the likelihood of providing a satisfac-
tory coverage of the input space for the component. A limit to such an
approach is that the higher the number of components, the more diffi-
cult the estimation of the n’s becomes. Also, time granularity (and
near decomposability [Cour77]) can offer criteria to find suitable

decompositions.

2.3.23 Behavior of a multi-interpreter system. When 4 system is viewed
as a hierarchy of interpreters, as defined in Sec. 2.3.2.1, the execution
relative to the selection of an input point for the highest interpreter
(which directly interprets the requests originating from the system

48 Technical Foundations

user) is supported by a sequence of input point selections in the next
lower interpreter, and so on up to the lowest considered interpreter.
Assume the system is composed of I interpreters, the first interpreter
being the top of the hierarchy and the Ith interpreter its base.

Each interpreter may be faulty and submitted to erroneous inputs.
Failure of any interpreter during the computations relative to the
input point selection of the next higher interpreter will lead to the
failure of the latter, and thus by propagation to the top interpreter’s
failure (i.e., to system failure). Adopting the terminology of the conven-
tional system reliability theory, the hierarchy interpreters constitute a
series system. Intuitively, it may be deduced that the system failure
rate is equal to the sum of the failure rates of interpreters of the hier-
archy. If A(#), i =1, ..., I denotes the failure rate of interpreter i, we
then have (the demonstration is left as an exercise to you):

I
AME =D &) (2.10)
i=1

Now consider that each interpreter is composed of C; components, i =
1,..., I At execution, a component of interpreter i will use services of
one or more components of interpreter i + 1, and so on. We may therefore
define trees of utilization of services provided by components of inter-
preter i + 1 by the components of interpreter i, as indicated in Fig. 2.8.

Thus, with each pair of adjacent interpreters, it is possible to associ-
ate a service utilization matrix U;,, = [Uyl,j=1,...,C, k=1,,C;.,..
U,;.1 is a connectivity matrix whose terms U}, are such that Uy, = 11if,
during execution, component j of interpreter i utilizes the services of
component % of interpreter i + 1, or else U;, = 0.

Let us define the following failure rate vectors:

wm A= l,i=1,...,Lj=1,...,C; where;is the failure rate of com-
ponent j of interpreter i.

m Q=[wl,i=1,...,Lj=1,...,C;wyis the aggregated failure rate
of component j of interpreter i; the term aggregated means that the

failure rates of components of interpreters i + 1, ..., I needed for
execution are accounted for.

| i,}\li,;l i3
Y [4

I i+11 | i+1,2

components

| LCi | interpreter i

\'". .

i+1,C+1 interpreter i+1

Figure 2.8 Utilization trees between components of interpreters.

Software Reliability and System Reliability 49

The vectors ; are solutions of the following matrix equation:
Qi=A+U;; 1 Q;,i=1,...,1-1,Q=A;
It then follows that:

I
Ql= Z VkAk
E=1

V, is the accessibility matrix of the top interpreter to interpreter k:
V, is the identity matrix of dimensions (C; x C1), V, = U, ® Uy, . . .,
®U,_14 k=2,...,I; where the symbol ® denotes the boolean product
of matrices (a given component can contribute only once through its
failure rate).

When applying Eq. (2.8) to the components of the upper interpreter
in the hierarchy, we obtain the following system failure rate:

Cq
A= Z ﬂl’j (Dl,j
)

where w; ; is the proportion of time during which component j of the top
interpreter is being executed, with an idle component period being
characterized by o, ; = 0.

Consider the important case in practice of a system composed of two
interpreters: a software interpreter and a hardware interpreter. It is
assumed that the software components are executed sequentially, and
that all hardware components are together involved in the execution; it
is further assumed that the system is in stable operating conditions. In
the following, indices S and H relate to software and hardware, respec-
tively. Applying the above approach leads to the following equations:

CHg
O)S,j=)\'S,j+ Z 7‘dH,Is:
k=1
(2.11)
Cs Cs CH
ji=1 ji=1 k=1

The intuitive result expressed in Eq. (2.11) has thus been obtained
through use of a rigorous approach.

2.4 Failure Behavior of an X-ware System
with Service Restoration

In Sec. 2.3, the behavior of atomic and multicomponent systems was
characterized without taking into account the effects of service restora-
tion, thereby allowing expressions of the failure rate of such systems

50 Technical Foundations

and of the reliability to be derived. In this section, service restoration is
taken into account, thus allowing the system behavior resulting from
the compound action of failure and restoration processes to be mod-
eled. Restoration activities may consist of a pure restart (supplying the
system with an input pattern different from the one which led to fail-
ure) or they can be performed after introduction of modifications (cor-
rections only or/and specification changes).

System behavior is first characterized by the evolution of its failure
intensity in Sec. 2.4.1. Section 2.4.2 introduces the various mainte-
nance policies that can be carried out. Sections 2.4.3 and 2.4.4 address
reliability and availability modeling, respectively.

2.4.1 Characterization of system behavior

The nature of the operations to be performed in order for the service to
be restored (i.e., delivered again to its user(s)) after a failure has
occurred enables stable reliability or reliability growth to be identified.
This may be defined as follows:

m Stable reliability. The system’s ability to deliver a proper service is
preserved (stochastic identity of the successive times to failure).

8 Reliability growth. The system’s ability to deliver proper service is
improved (stochastic increase of the successive times to failure).

Practical interpretations are as follows:

m Stable reliability. At a given restoration, the system is identical to
what it was at the previous restoration. This corresponds to the fol-
lowing situations: (1) in the case of a hardware failure, the failed part
is substituted for another one, identical and nonfailed; (2) in the case
of a software failure, the system is restarted with an input pattern
that differs from the one having led to failure.

m Reliability growth. The fault whose activation has led to failure is
diagnosed as a design fault (in software or hardware) and removed.

Reliability decrease (stochastic decrease of the successive times to
failure) is both theoretically and practically possible. In this case, it is
hoped that the decrease is limited in time and that reliability is glob-
ally growing over a long observation time.

Reliability decrease may originate from (1) introduction of new
faults during corrective actions, whose probability of activation is
greater than that of the removed fault(s); (2) introduction of a new ver-
sion with modified functionalities; (3) change in the operating condi-
tions (e.g., an intensive testing period; see [Kano87], where such a
situation is depicted); (4) dependencies between faults: some software
faults can be masked by others, that is, they cannot be activated as long

Software Reliability and System Reliability 51

as the latter are not removed [Ohba84]; removal of the masking faults
will lead to an increase in the failure intensity.

The reliability of a system is conveniently illustrated by the failure
intensity, as it is a measure of the frequency of the system failures as
noticed by its user(s). Failure intensity is typically first decreasing
(reliability growth) due to the removal of residual design faults either
in the software or hardware. It may become stable (stable reliability)
after a certain period of operation; the failures due to internal faults
occurring in this period are due either to physical faults or to unre-
moved design faults. Failure intensity generally exhibits an increase
(reliability decrease) upon the introduction of new versions incorporat-
ing modified functionalities; then it tends toward an asymptote again,
and so on. It is noteworthy that such a behavior is not restricted to the
operational life of a system but also applies to situations occurring
during the development phase of a system—for example, (1) during
incremental development [Curr86] or (2) during system integration
[Leve89, Tohm89].

Typical variations of the failure intensity may be represented as
indicated in Fig. 2.9, curve a. Such a curve depends on the granularity
of the observations, and may be felt as resulting from the smoothing of
more noticeable variations (curve b); in turn, it may be smoothed into a
continuously decreasing curve c. Although such a representation is
very general and covers many practical situations (see, for example,
[Kenn92]), there are situations which exhibit discontinuities impor-
tant enough that the smoothing process cannot be considered as rea-
sonable (e.g., upon introduction of a new system generation).

2.4.2 Maintenance policies

The rate of reliability growth (i.e., failure intensity decrease) is closely
related to the correction and maintenance policies retained for the sys-

Failure intensity

Figure 2.9 Typical variations of a system’s failure intensity.

52 Technical Foundations

tem [Kano89]. These policies may consist of either (1) system modifica-
tion after each failure, or (2) system modification after a given number
of failures, or even (3) preventive maintenance (i.e., introduction of mod-
ifications without any failure observed on the system considered). The
status of a system between two modifications will be called a version.

A policy that accepts as special cases the specific cases mentioned
above is as follows: the jth system modification takes place after g, fail-
ures have occurred since the (j — 1)th system modification, which
means that version j experiences g; failures.

Concerning the times to failure:

m Let X;; denote the time between service restoration following the
(i — 1Dth failure and the ith failure of version j.

m Let Z; denote the time between service restoration following the ajth
failure of version j and service interruption for the introduction of
the jth modification, that is, for the introduction of version (j + 1).

Considering now the times to restoration, two types of service
restoration are to be distinguished: service restoration due to system
restart after failure and service restoration after introduction of a new
version. Let Y;; denote the restart duration after the ith failure of ver-
sion j, and W, denote the duration necessary for the introduction of the
Jth modification; the modification itself may have been performed off-
line. Finally, let T} denote the time between two version introductions.
We have:

a;
TJ'= Z ()(f,i+yvj',i)+zj+ VVjﬁjZ 1’2’ v

i=1

The relationship between the various time intervals is given in Fig.
2.10.

The number of failures between two modifications (e;) characterize
the policy for maintenance and service restoration. It depends on sev-

Version 1 Version 2 Version j§
z 77, . 7 — —
AT %12 JZ1J XZ,’T %2,a, sz XjJJ X
Y1 1 Y1 2 W1 Y2,1 Y2,a2 W2);',1 a. Yj','
a1 =2 as il
e |- - - - .
T1 T2 T!

[C] SystemUP W System down after failure %% System down for version introduction

Figure 2.10 Relationship between the various time intervals.

Software Reliability and System Reliability = 53

eral factors such as (1) the failure rate of the system, (2) the nature of
the faults (e.g., time needed to diagnose the fault and the consequence
of the failure due to the activation of this fault), (3) the considered
phase in the life cycle (the policy may vary for a given system within
the same phase), and (4) the availability of the maintenance team.
Three (extreme) special cases of this general policy are noteworthy:

l.a;=1and Z; =0 Vj. Service is restored only after a system modifi-
cation has been performed. This case relates to (1) a usual hypothe-
sis for several software reliability (growth) models or (2) the case of
critical systems after a (potentially) dangerous failure occurrence.

2. a;=cand Z;=0Vj. Service is restored without any system modi-
fication ever being performed (stable reliability). This case relates to
(1) hardware, when maintenance consists of replacing a failed part
with an identical (new) one and (2) software, when no maintenance
is performed; service restoration always corresponds to a restart
with an input pattern different from the one having led to failure.

3. a;=0. The (j + Dth version is introduced before any failure occur-
rence since the last modification. This case corresponds to preven-
tive maintenance, either corrective, adaptive, or perfective.

Although this policy is more general than those usually considered,
it is a simplification of real life, and does not explicitly model such phe-
nomena as interweaving of failures and corrections [Kano88] and fail-
ure rediscoveries [Adam84].

2.4.3 Reliability modeling

We focus here on the failure process and therefore do not consider the
times to restoration or the (possible) time interval between a failure
and the introduction of a modification (i.e., we assume the Y}/s, W/s,
and Z’s are zero, which means that the failure instants are also
restoration instants). Let:

® {, = 0 denote the considered initial instant (the system is assumed
nonfailed).

" n=12,...denote the number of failures. As the nth system failure
is in fact the ith failure of version j, the relationship between n, i, and
jis

J
nz(z ak~1)+i,j&1,2,...,i=1,...aj,a0=0
k=1

mt,,n=12 ...denote the instant of failure occurrence.

54 Technical Foundations

m £, @),j=1,2, ... denote the probability density functions (pdf) of the
times to failure Xj,i and sf, (¢) denote their survival function (the
one’s complement of its distribution function). The X;/s are assumed
stochastically identical for a given version.

m ¢,(¢) and @,(¢) denote, respectively, the pdf and the distribution func-
tion of the instants of failure occurrence, n =1,2,. . ..

m N@) denote the number of failures having occurred in [0,f] and H (t)
denote its expectation: H(t) = E[N()].

Performing derivations adapted from the renewal theory (see, for
example, [Gned69]) is relatively straightforward, provided that the
X;’s are assumed stochastically independent. This assumption,
although usual in both hardware and software models, is again a sim-
plification of real life. The 7/s can reasonably be considered as stochas-
tically independent, as resuming execution after the introduction of a
modification generally involves a so-called cold restart; however, it
must be stated that imperfect maintenance, the consequences of which
were noticed a long time ago [Lewi64], is also a source of stochastic
dependency. The stochastic independence of the X;/’s for a given j
depends on (1) the extent to which the internal state of the system has
been affected and (2) the nature of operations undertaken for execution
resumption (i.e., whether or not they involve state cleaning).

The following is then obtained under the stochastic independence
assumption

J—-1
0n(8) = (® ka(t)*“k) FE@OMG=12 0= ga=0 (212
k=1

where * stands for the convolution operation, ka(t)*”k, the a,-fold convo-
lution of f, (¢) by itself, and 011, (), the convolution of £, (2), . . ., £, ().
In Eq. (2.12) the first term covers j — 1 versions and the second term
covers the i failures of version j. We have

P(N(t) 2 n} = P{t, <t} = @,

PING) =n) = Pit, <t <t, .1} = ®,(8) — B, 41(t)

oo =5]

H@t)= > nPN@=n}= > nl®) - @, ,1t)]

n=1 n=1

HO= S no0- S -Do0= > 0
n=1 n=1

n=1

Software Reliability and System Reliability 55

Let h(¢) denote the rate of occurrence of failure [Asch84], or ROCOF,
h(t) = dH(t)/dt, whence

o0 - Y j-1
hO= 3 00= 3 Z(l(ka(t)*ak)*(f,g<t)*i>) (2.13)

j=1i=1\k=

As we do not consider simultaneous occurrences of failure, the fail-
ure process is regular or orderly, and the ROCOF is then the failure
intensity [Asch84].

When considering reliability growth, a usual measure of reliability is
conditional reliability [Goel79, Musa84]; since the system has experi-
enced n — 1 failures, conditional reliability is the survival function
associated with failure n. It is defined as follows:

R(D=PXji+1>1 | t,_1}=sf, (1), fori<a;
J (2.14)
RM=PXj+11>1|t,i)=sf, (v, fori=aq

This measure is mainly of interest when considering a system in its
development phase, as we are then concerned with the time to next
failure. However, when dealing with a system in operational life, the
interest is in failure-free time intervals T whose starting instants are
not necessarily conditioned on system failures; that is, they are likely
to occur at any time £ In this case, we are concerned with the reliabil-
ity over a given time interval independently of the number of failures
experienced, that is, interval reliability. Interval reliability is then the
probability for the system to experience no failure during the time
interval [t, ¢t + 1].

Consider the following exclusive events:

E,={t+1t<t} E,={t, <t<t+1<t,1},n=12,...

Event E, means that exactly n failures occurred prior to instant ¢, and
that no failure occurs during the interval [z, ¢ + 1]. The absence of fail-
ure during [¢, ¢ + 7] is the union of all events E,, n =0,1,2, . . . The inter-
val reliability, owing to the exclusivity of the events E,, is then

Rt t+0= PIE,
n=0

The probability of event E, is shown as

PE,)} =Plt,<t<t+1<t,+Xj,i+1}

P{E.} = f:P{x <t, <x+dx}PIXji+1>t+1—x}= fotsf;(j(t + 71T —x) 0,(x) dx

56 Technical Foundations

The reliability thus has the expression

oo aJ'Al ‘
Rt +0=sft+D+ > > | sij(t+‘t—x)(])(f) () dx

j=1i=0

which can be written as
o G~ 1

Rtt+0=sf,t+D+ > D Sij(t+‘c)*¢(i') (1) (2.15)

j=1i=0 4
This equation is obviously not easy to use. However, it is not difficult to
derive, for T << ¢, the following equation from Egs. (2.13) and (2.15):

Ritt+1)=1-h@) 1+ 0(1) (2.16)

Besides its simplicity, Eq. (2.16) is highly important in practice, as it
applies to systems for which the mission time 7 is small with respect to
the system lifetime ¢ (e.g., systems on board airplanes).

The above derivation is a (simple) generalization of the renewal the-
ory and of the notion of renewal process to nonstationary processes; in
the classical theory (stationary processes), (1) the X;/s are stochasti-
cally identical, that is, ij(t) = f(t) ¥j (the case where the first time to
failure has a distribution different from the subsequent ones is re-
ferred to as modified renewal process in [Cox62, Biro74]) and (2) H(?)
and k(¢) are the renewal function and the renewal density, respectively.

Consider the case where the X,’s are exponentially distributed: £, (t) =
A, exp(—Ait). The interfailure occurrence times in such a case constitute a
piecewise Poisson process. No assumption is made here on the sequence
of magnitude of the A’s. However, it is assumed that the failure process
is converging toward a Poisson process after r modifications have taken
place. This assumption means that either (1) no more modifications are
performed or (2) if some modifications are still being performed, they do
not significantly affect the failure behavior of the system. Let A, e, ...,
A} be the sequence of these failure rates (Fig. 2.11).

The Laplace transform h(s) of the failure intensity A(¢) (Eq. (2.13)) 1s:

E() ril .iﬁl ;\vk Gy azj A i A r‘ﬁl)\'k a4
s) = —I—) + " ——

j=1 k:O(KkJFS) i:l(xj'“") s k_1(7“k+3)
Derivation of A(t) is very tedious (see Prob. 2.6). Thus our study will

be limited to summarizing the properties of the failure intensity A(t)
that can be derived:

m A(¢) is a continuous function of time, with A(0) = A, and A(e) = A

Software Reliability and System Reliability 57

;‘-2 —————— P—
: l e s e
?\:r_“ —-—-—-——-—-.l.— ————————
?\'f "'_I—_'_'_'I_ ____________
-
L I
tO f1 ta1 t

Figure 2.11 Sequence of failure rates.

® When the a/s are finite,

—A condition for A(¢) to be a nonincreasing function of time (i.e., a
condition for reliabdility growth)ish 2 A2 ... 20 2... 2 A,
—The smaller the a/s, the faster the reliability growth becomes.

—If a (local) increase in the failure rates occurs, then the failure
intensity correspondingly (locally) increases.

When a, = <0, no correction takes place and we are faced with a clas-
sical renewal process; then A(t) = A, V ¢ € [0, «], which is the formu-
lation of stable reliability.

These results are shown in Fig. 2.12, where the failure intensity is plot-
ted fora;=a Vj.

Typical variations of conditional reliability R,(t) (Eq. (2.14)) are
given by Fig. 2.13. When stable reliability is assumed, the underlying
process is a classical renewal process with R,(t1)=R,(1),n=2,3,. . .. For
a so-called modified renewal process (the case where the first time to
failure has a distribution different from the subsequent ones [Cox62,
Biro74]), we usually have R, (1) < Ri(1),n =2, 3, . . ., with R,(1) = R.(1),
nz=3.

Figure 2.12 Failure intensity.

58 Technical Foundations

0

Figure 2.13 Conditional reliability.

Interval reliability R(t,t + 1) for a given, finite, a (which corresponds
to a given curve of Fig. 2.12) can then be derived from Eq. (2.16) for
7 << t. Figure 2.14 indicates typical variations of R(t,t + 1): reliability
over mission time T increases with system lifetime #. In case of stable
reliability (i.e., a classical renewal process), interval reliability is inde-
pendent of the time origin ¢: the curves of Fig. 2.14 are thus not distin-
guishable; however, for a modified renewal process, depending on the
granularity of time representation versus the mean time to failures,
two groups of curves may be distinguished depending on the values of
¢t compared to the mean time to failures.

Although still suffering from some limitations such as the assumed
independency between the times to failure necessary for performing the
renewal theory derivations, the derivations conducted in this section are
more general than what has been previously published. The resulting
model can be termed a knowledge model [Lapr91] with respect to the
reliability growth models which have appeared in the literature, which
can be termed action models. Support for this terminology, adapted from
the Automatic Control theory, lies in the following remarks:

Rt t+7)

t”

0 1T

Figure 2.14 Interval reliability.

Software Reliability and System Reliability 59

® The knowledge model allows the various phenomena to be taken
into account explicitly and enables a number of properties to be
derived; nevertheless, it is too complex in practice and not suitable
for predictions.

m The action models, although based on more restrictive assumptions,
are simplified models suitable for practical purposes.

The results obtained from the knowledge model thus derived in this
section enable the action models reported in the literature to be classi-
fied as follows:

1. Models based on the relation between successive failure rates, which
can be referred to as failure rate models; these models describe the
behavior between two failures. Two categories of failure rate models
can be distinguished according to the nature of the relationship
between the successive failure rates: (1) deterministic relationship,
which is the case for most failure rate models; see, for example,
[Jeli72, Shoo73, Musa75]; (2) stochastic relationship [Keil83,
Litt88]; the corresponding models are known as doubly stochastic
reliability growth models in [Mill86].

2. Models based on the failure intensity, thus called failure intensity
models; these models describe the failure process, and are usually
expressed as nonhomogeneous Poisson processes; see, for example,
[Crow77, Goel79, Yama83, Musa84, Lapr91].

Most reliability growth models consider reliability growth stricto
sensu, without taking into account possible stable reliability or reliabil-
ity decrease periods: they assume that the failure rate and/or the failure
intensity decrease monotically and become asymptotically zero with
time. Note, however, that the S-shaped models [Yama83, Tohm89] relate
to initial reliability decrease followed by reliability growth, and that the
hyperexponential model [Lapr84, Kano87, Lapr91] relates to reliability
growth converging toward stable reliability. Finally, it is noteworthy
that the models referenced above have been established specifically for
software; however, there is no impairment to apply them to hardware
[Litt81]; conversely, the Duane’s model [Duan64], derived for hardware
has been successfully applied to software [Keil83]. Chapter 3 provides a
comprehensive survey of these reliability models.

Of prime importance when considering the practical use of the above
models is the question of their application to real systems. Failure data
can be collected under two forms: (1) times between failures or (2) num-
ber of failures per unit of time (failure-count data). Failure rate models
are more naturally suited to data in the form of times between failures
whereas failure intensity models are more naturally suited to data in

60 Technical Foundations

the form of number of failures per unit of time. However, some models
accommodate both forms of failure data, such as the logarithmic Pois-
son model [Musa84] or the hyperexponential model. The collection of
data under the form “number of failures per unit of time” is less con-
straining than the other form, since one does not have to record all fail-
ure times; the definition of the unit of time can be varied throughout
the life cycle of the system according to the amount of failures experi-
enced, e.g., from a few days to weeks during the development phase,
and from a few weeks to months during the operational life.

As action models are based on precise hypotheses (particularly with
respect to the reliability trends they can accommodate, as discussed
above), it is helpful to process failure data before model application, in
order to (1) determine the reliability trend exhibited by the data and
(2) select the model(s) whose assumptions are in agreement with the
evidenced trend [Kano91b]. Trend tests are given detailed treatment in
Chap. 10.

2.4.4 Availability modeling

All the time intervals defined in Sec. 2.4.2 are now considered, i.e., the
times to failure and the times to restoration: the Y,/s, Zs, and W/s are
no longer assumed to be zero. For simplicity, it is assumed that the
times to restoration after failure are stochastically identical for a given
version, i.e., Y;;, =Y, Let:

m t”, = 0 denote the considered initial instant (the system is assumed
nonfailed).

m n stand for the number of service restorations that took place before
instant .

s ¢, and ", n = 1,2, ... be the instants when correct service is no
longer delivered and when service is restored, respectively, either:

—Upon (respectively after) failure, with n = X3 (@31 + 1) + 4, j =
1,2,...,i=1,...a,a,=0

—Upon (respectively after) stopping the operation of system in order
to introduce a modification, with n = Y (ap_ 1 + 1), j=12,...,
ag = 0

m @), f5(®), fwlt),j = 1,2, .. . denote the probability density functions
(pdf’s) of the Y;’s, Z/s, and W/s, respectively, and sf;(¢) the survival
function of the Z;s.

m y,(¢) be the pdf of the instants of service restoration,n=1,2, . ..

Derivation of availability is performed as in the case of reliability,
with the pdf of the instants of service restoration y,(¢) replacing the pdf

Software Reliability and System Reliability 61

of the instants of failure occurrence ¢,(¢). As in Sec. 2.4.3, we assume
that the various time intervals under consideration are stochastically
independent, which leads to:

J
[| Fornzz (ap_1+1)+1
k=1

Jj—-1

VD) = (O (£ () * F®) = (o) » f%(t))) « (Fl8) * FO)"
k=1

J+1

m Forn = Z (@p_1+ 1)
E=1

J
VD)= @ (F(6) * (0™ # (fo (0 * fin(0)
=1

Let us consider the event E, = {¢", <t <#/,,1},n=0,1,2,. . . . The event
E, means that exactly n service restorations took place before instant
t, and that the system is nonfailed at instant ¢. The pointwise avail-
ability A(¢), denoted simply by availability in the following, is then, due
to the exclusivity of events E,,:

A@)= > P(E,)
n=0
The probability of event E, is:

i
m Forn= Z (@r_1+1D+i:PE})=Pit" <t<t+1<t’ +Xji+1)
k=1

& i
PE,) = jo Plx <t <x +dx} PXGi+ 1>t —x) = jo sfe(t —x) y(o) dox

J+1

m Forn = Z (@y_1+1)
K1

. t
PE,} =Plt", <t <t +1<t"+Z} = jo SFt -) () dx

The expression of A(¢) is then

AW =sf D+ D x
j=1

a;j—1
(Sf)s(t) £ >y)(t) +8f,(8) * W(jf(1))(t))

J
i=0 ((@, _+D+i
F=1

62 Technical Foundations

Statistical estimation of the availability of a set of systems is given
by the ratio of nonfailed systems at time ¢ to the total number of sys-
tems in the set. When field data are related to times to failure and to
times to restoration, considering the average availability rather than
availability facilitates the estimation process, as the average availabil-
ity is the expected proportion of time. a system is nonfailed (see, for
example, [Barl75]). The average availability over [0,f] is defined by

_1f
Att) =+ fo A(D) dr

Denoting respectively UT; the _dbserved times where the system is
operational, a statistical estimator of A,/(t) is given by the following
analytical expression

At = Z UT,

t—l

So far, no assumption has been made on the j)df’S of the various
times considered. To derive properties of the availability, consider the
case where:

® A modification takes place after each failure,ie.,q;=1,Z;,=W,=0V,

» The X;/’s and the Y;’s are exponentially distributed: f3(¢) = A; exp(-A;t),
fy(t) = U exp(ugt) and that both corresponding piecewise Po1sson
processes converge toward Poisson processes after r modifications
have taken place.

Then the Laplace transform A(s) of availability is
r-1 1

- 1 J A 0

A= (5) L)
jZ]_ 7\:} +8 kU]_)'k +5 !J'k +8

R 1 rﬁl e\ M
s 7\'r+ur+s A'r+s k=1 M + s A'kJrs
The times to failure are large with respect to the times to restora-

tion, i.e., A;/i; << 1. Performing an asymptotic development with
respect tO?\. /1 for the unavailability A@®) =1-A(@) leads to

r—1

Alt) = A + Z oy exp (—A¢) — A1 exp (—H4t) (2.17)
| | ! _
k-1
Ay
r—1 ﬁ i1 _ 2\4_,- r—1 Kk

E=j M | ﬁ [Ty Me peThes M—H

Software Reliability and System Reliability 63

The o, is linked by the following equation:

r—1 7\,]_ A,r
Z Oy =—""="7"
i=1 M1 My

The following properties can be derived from Eq. (2.17), thus con-
firming and generalizing what had previously been established in
[Cost78, Lapr84] through modeling via multistate Markov and semi-
Markov chains:

P1. When reliability becomes stable, unavailability becomes constant:
Aloo) = A/,

P2. If (A/uy) 2 (AJp,), then there is an overshoot of unavailability in
comparison with the asymptotic value (A,/u,).

P3. There is a single unavailability maximum (availability minimum)
if A /0 S (A/up, for j =1, . . . ; conversely, local maxima (min-
ima) occur. '

P4. If the piecewise Poisson process of the interfailure occurrence
times 1s continuously nonincreasing from 2; to A,, and if the times
to failure are large with respect to the times to restoration, then
Ama.x = (AI/HI)-

P5. The time to reach the maximum unavailability (minimum avail-
ability) is of the order of magnitude of the mean time to restoration

P6. The changes in availability are significantly more influenced by
the stochastic changes in the times to failure than by the stochas-
tic changes in the times to restoration, which can thus be assumed
as stochastically identical over the system’s life.

Figure 2.15 gives the typical shape of system unavailability in the
presence of reliability growth.

Figure 2.15 Typical system unavailability.

64 Technical Foundations

In case of stable reliability, (A, = A, 7 =1, ..., r), assuming |; = l,,

=1,. 1, the maximum corresponds to the asymptotlc unavailabil-
1ty Thus we have A(e) = Amax

Although the availability of operational computing systems is usu-
ally significantly influenced in the field by reliability growth (for
instance, the data displayed in [Wall84] for AT&T’s ESS-4 show that
unavailability is decreased by a factor of 250 during 3.5 years of opera-
tion), the only published action model for availability in the presence of
reliability growth is the hyperexponential model [Lapr91].

2.5 Situation with Respect to the State
of the Art in Reliability Evaluation

Hardware evaluation and software evaluation have followed courses
which could hardly have been more distant from each other.

Hardware evaluation has focused on the operational life, placing the
emphasis on the influence of the system structure on dependability. A
number of significant results have been derived with respect to (1) the
role and influence of the coverage of the fault-tolerance strategies and
mechanisms [Bour69, Arno73]; (2) the construction [Beya81] and pro-
cessing [Gros84, Bobb86, Cour77] of large, stiff, Markov models; (3) the
definition and evaluation of performance-related measures of depend-
ability, which are usually gathered in the concept of performability
[Meye78, Smit88]. These results have been integrated into software
packages, such as ARIES, HARP, SAVE, and SURF. As far as elemen-
tary data are concerned, reliance has generally been placed on data-
bases such as the MIL-HDBK-217, which are limited to permanent
faults, whereas it is currently agreed that temporary faults constitute
a major source of failure [Siew92]. In addition, it has largely been
ignored that the reliability of hardware parts grows significantly dur-
ing the whole system’s life, as shown, for example, in the experimental
data displayed in [Baue85].

Software evaluation has mainly focused on the development phase,
and especially on the reliability growth of single-component (black-
box) systems. Many models have been proposed (see surveys such as
[Rama82, Yama85] and Chap. 3). Less attention has been paid to
accounting for the structure of a software system, where most of the
corresponding work has been restrlcte_d to the failure process, either
for non-fault-tolerant [Litt81, Lapr84] or for fault-tolerant software
systems [Hech79, Grna80, Lapr84, Arla88]; only our recent work
[Lapr91, Kano93a] deals with the evaluation of the reliability growth
of a system from the reliability growth of its components. In [Lapr91] a
so-called transformation approach based on a Markov interpretation of
the hyperexponential reliability growth model is derived: the hyperex-

Software Reliability and System Reliability 65

ponential model is regarded as resulting from the transformation of a
traditional Markov model (stable reliability) into another Markov
model, which, through a suitable addition of states, enables reliability
growth phenomena to be accounted for. This stable reliability-reliabil-
ity growth transformation—is shown to be applicable to the Markov
models of systems made up of components. In particular, it enables the
reliability and the availability of systems to be evaluated from the reli-
ability growth of their components. This approach has been applied to
model the reliability growth of fault-tolerant software systems (recov-
ery blocks, N-version programming and N self-checking programming;
see Chap. 14) in [Kano93a].

From the practical utilization viewpoint, the situation can be sum-
marized as follows:

m Hardware evaluation is fairly well included in the design process;
although the estimations are usually carried out more as an adjunct
to the design methodology than an integral part of producing an
optimized design, predictive evaluations of operational dependabil-
ity are routinely performed during the design of a system.

¥ In the vast majority of software developments, evaluation (if any) is
extremely limited, and most of the published work devoted to appli-
cations on real data is in fact post mortem work.

However, when dealing with the assessment of dependability, the
users of computing systems are interested in figures resulting from
modeling and evaluation of systems, composed of hardware and soft-
ware, with respect to both physical and design faults. This statement
may be supported by considering:

1. The requirements for systems in terms of dependability; an example
is provided by the requirements for electronic switching systems
[Clem87] (Fig. 2.16), in which it is explicitly stated that they apply
to both hardware and software, especially in terms of reliability and
availability.

2. The sources of failure of computing systems; an example of sources
of failures is given in Fig. 2.17, showing results of a survey on the
sources of unavailability for electronic switching systems and trans-
action processing systems [Toy85]. Clearly, an evaluation which
would be performed with respect to hardware failures only would
not be representative of the actual behavior of the considered sys-
tems, and this situation is exacerbated even more when considering
(hardware) fault-tolerant systems, where software is the depend-
ability bottleneck, as it contributes to more than half the system fail-
ures [Gray90].

66 Technical Foundations

The hardware and software for switching systems must be designed to meet the
requirements shown in the table below.

Operation * Continuous (20 years)

Time shared channels * Thousands

Recovery time ® Critical

Value of reliability * High 1 call per 100,000 call cut off
Downtime * <3 minutes/year

Synchronization ® Network sync

System growth

Database changes
Program changes
Maintenance

All must be done with the system on-line and operational

Figure 2.16 Requirements for ESSs.

Faced with these user requirements, the evaluations of the system’s
dependability in terms of hardware and software are not common prac-
tice compared to the large amount of evaluations considering only hard-
ware. Hardware and software evaluations generally address stable
reliability [Rohn72, Avey80, Angu82, Star87, Pign88, Duga94], with a
few exceptions accounting for reliability growth [Cost78, Lapr91]. Eval-
uations dedicated to reliability growth are based on either multistate
Markov modeling [Cost78] or on Markov modeling combined with the
above-mentioned transformation approach [Lapr91]. For evaluations
related to stable reliability, various modeling techniques are used: semi-
Markov modeling [Star87] or Markov modeling used either (1) alone
[Rohn72, Avey80, Angu82] or (2) together with other techniques such as
fault tree analysis [Duga94b] or block diagrams [Pign88].

In addition, standardization bodies and regulating agencies are
increasingly aware of the need to perform evaluations encompassing

Unavailability Electronic Transaction
sources switching processing
Hardware failures 40%
20%
Environment 5%
Software failures 15%
.. 30%
Recovery deficiencies 35%
Incorrect procedures 20%
30%
Others, such as updating 5%

Figure 2.17 Sources of failures.

Software Reliability and System Reliability 67

Studies have been conducted for ESA into software reliability requirements for ESA
Space programmes. These studies, conducted in 1986, concluded:

a) Software failure is a process that appears to the observer to be “random”, there-
fore the term “reliability” is meaningful when applied to a system which includes
software, and the process can be modeled as stochastic.

b) The definition of “Reliability” is identical for a system which includes software as
it is for a purely hardware system. It is the classical definition: “the probability of
successful operation for a given period under given conditions”.

¢} The specification of numerical levels of reliability for a complete system is mean-
ingless unless the reliability of the software which it contains is similarly quanti-
fied and the level of reliability achieved by that software is verified.

Figure 2.18 Statement from ESA.

both hardware and software. Two such examples are given in Figs. 2.18
and 2.19. The example in Fig. 2.18 is extracted from an invitation to
tender from ESA, the European Space Agency [ESA88], and reports
the conclusions derived from the studies conducted for ESA in 1986.
The example in Fig. 2.19, extracted from the British Standard [BStd86]
(Part 4) is more general since it addresses all types of systems contain-
ing software. Unfortunately, despite the existence of such recommen-
dations made several years ago, the specification of software reliability
is far from being a common activity.

Clearly, the results presented in this chapter show that the current
limitation to the practicality of dependability evaluations of hardware

Specification of reliability for systems containing software (Section 3.1.7)

The mechanisms for the specification of reliability requirements, from the point of
view of the failure of an item to perform its function, should be no different for sys-
tems containing software than for any other. It is imperative that there should be no
discrimination between failures due to logical faults in the system from those due to
physical breakdown. The following areas, however, require special consideration:

a) In the prediction of reliability, allowance should be made for the contribution
made by logical errors to the overall unreliability of the system. At the moment,
predictien of such a contribution, particularly before testing begins, is neither
accurate nor well understood. Experience from similar systems is the most likely
source of such data.

b) The contribution of logical errors to system unavailability should be considered.
Although there is no ‘repair’ in the strict sense, depending upon the design, con-
siderable time may elapse after a after a failure before operation restart.

¢) The principal area in which failures due to logical errors differ from physical fail-
ure is that such failures do not require spares, routine maintenance, and repair
resources generally required for hardware. However, the inclusion of software in
the system may indicate the need for a software facility and requirement for this
facility should be separately considered.

Figure 2,19 Recommendations from British Standards.

68 Technical Foundations

and software systems is not due to theoretical impediments. The lack of
credibility of predictive software reliability evaluations lies therefore
in the capabilities of the current reliability growth models—the action
models in our terminology—with regard to the failure data upon which
their predictions are based. When the predictions and failure data are
homogeneous, they apply to the same phase of the system life (either
development or operation) and are commensurate; then the application
of those models is greatly facilitated, and the evaluations done are
meaningful. The problem lies in heterogeneous situations, typically
predicting operational dependability from failure data collected during
development. The current models, which are fundamentally perform-
ing extrapolations, then fall out (a typical situation is that the software
will exhibit a reliability in operation that is hopefully much better than
predicted from failure data collected during its development), and new
approaches are needed, such as those proposed in (1) [Lapr92c] via the
so-called product-in-a-process approach, aimed at enhancing the relia-
bility prediction for a given software when exploiting field data col-
lected for former, similar software or (2) [Haml93] via the amplification
of software reliability testing.

2.6 Summary

In this chapter, we addressed the problem of software reliability and
system reliability. Following our discussion of the dependability con-
cept, we dealt with system behavior up to the (next) failure. We also
focused on the sequence of failures when considering restoration
actions consecutive to various forms of maintenance. The assumptions
made for derivation purposes were carefully stated and analyzed, and
we commented at length on the results obtained in order to relate them
to the existing body of results. Furthermore, we described a generaliza-
tion of the classical, hardware-oriented, reliability theory in order to
incorporate software as well. This chapter is then concerned with relia-
bility growth phenomena; since most published material on reliability
growth is software-oriented, this chapter can be regarded as a general-
ization to include hardware as well. Finally, we were devoted to position
the results obtained with respect to the state of art in dependability
evaluation, considering both hardware and software.

Problems

2.1 Some illustrative examples of sequences fault—error—failure are given in
Sec. 2.2.2. Considering physical and design faults, give similarities and differ-
ences with respect to fault creation mode and manifestation mode.

Software Reliability and System Reliability 69

2.2 Give other examples of the sequence fault—error—failure.

2.3 In Sec. 2.3.1, a general formulation of the reliability R(¢) as a function of
the distribution of the failure rate A (g, (1)) is given. It is stated that a gamma
distribution for A leads to a Pareto distribution for R(t). Demonstrate this
result.

2.4 Considering a multi-interpreter system viewed as a hierarchy of inter-
preters, Eq. (2.10) gives the relationship between the failure rate of the system
and the failure rates of its interpreters. Demonstrate this result.

2.5 The results of this chapter show that the same approaches can be applied
to hardware and software systems; for those who are familiar with Markov
modeling, construct the Markov chain of a multi-interpreter system with a
hardware and a software interpreters. The hardware interpreter is made of
two hardware redundant components (failure rate of a component A, repair
rate i) and the software interpreter is made of one component (failure rate A,
restart rate 8). Derive the reliability of the system.

2.6 Section 2.4.3 gives the expression of the Laplace transform of the failure
intensity, A(s), related to the sequence of failure rates presented in Fig. 2.11.
Assuming operation restart after correction only (a; =1V j), derive the equa-
tion given the temporal expression of the failure intensity function A(z).

2.7 As in the previous exercise, assuming operation restart after correction
only (a; = 1V j), derive the expression of the conditional reliability, R,(t) from
Eq. (2.14), and derive the plot of R(t) (Fig. 13).

2.8 Asin the previous exercises, assuming operation restart after correction
only (@¢; =1 V j), derive the expression of the interval reliability, R(¢, £ + 1) (Eq.
(2.16) and Fig. 14).

2.9 Considering the following sequence of failure rates,

M=rAM=[n-1DnA =[(rn-2/nlA... k. 1=[1/nl kA =0

derive the expressions of the failure intensity, the conditional reliability and
the interval reliability.

