Dynamic Programming:

Matrix-Chain Multiplication

Yufei Tao's Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/11

Dynamic Programming: Matrix-Chain Multiplication

(Matrix—Chain Multiplication)

You are given an algorithm A that, given an a X b matrix Aand a b X ¢
matrix B, can calculate AB in O(abc) time. You need to use A to
calculate the product of A;A,...A,, where A; is an a; X b; matrix for

i € [1, n]. This implies that b;_; = a; for i € [2, n], and the final result is
an a; X b, matrix.

A trivial strategy is to apply A to evaluate the product from left
to right. However, we may be able to reduce the cost by following
a different multiplication order.

2/11

Dynamic Programming: Matrix-Chain Multiplication

Example

Consider A;A>A3 where A; and A, are m X m matrices, but Az is
m x 1.

There are two multiplication orders:

(] (A1A2)A3.
The cost of computing B = A1 Ay is O(m - m - m) =
O(m?®) and B is an m x m matrix. The cost of BAj3 is
O(m-m-1) = O(m?). The total cost is O(m?).

o Al(A2A3).
The cost of computing B = AyAz is O(m - m - 1) = O(m?)
and B is an m x 1 matrix. The cost of A;B is
O(m-m-1) = O(m?). The total cost is O(m?).

3/11

Dynamic Programming: Matrix-Chain Multiplication

Parenthesizing A;A,...A, at A, for some k € [1,n — 1] converts the
expression to (Aj...Ag)(Aki1..-Ap), after which you can parenthesize
each of A;...A; and A;,1...A, recursively.

A fully parenthesized product is
@ either a single matrix or
@ the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3As) and ((A1A2)A3)A, are fully
parenthesized, but A;(A2A3A,) is not.

A fully parenthesized product determines a multiplication order that, in
turn, determines the computation cost.

Goal: Design an algorithm to find in O(n®) time a fully parenthe-
sized product with the smallest cost.

4/11

Dynamic Programming: Matrix-Chain Multiplication

(Recu rsive Structu re)

By parenthesizing at Ay, we obtain

(A1..A) (A1 AL),
e

B; B;

where By is an a; X by matrix and Bj is an a1 X b, matrix.

The total cost is

cost of computing By + cost of computing B, + O(ay bk b,,).

5/11

Dynamic Programming: Matrix-Chain Multiplication

We define cost(i,j), where 1 < i < j < n, to be the smallest achievable
cost for calculating A;...A;. Our objective is to calculate cost(1, n).

If we parenthesize A;...A; at Ay, we obtain

(Ai.. Ay (Aks1--.A)).
——— —— —
cost(i,k) cost(k+1,j)
The total cost is

cost(i, k) + cost(k + 1, j) + O(ajbiby).

6/11

Dynamic Programming: Matrix-Chain Multiplication

To attain cost(i, j), we should try all possible parenthesizations of
A;...A;. This implies:

cost(i,j) =

{0(1) if i =j

min{(_:{-(cost(i, k) + cost(k +1,j) + O(ajbby)) if i<

By dyn. programming, we can compute cost(1,n) in O(n?) time.

7/11

Dynamic Programming: Matrix-Chain Multiplication

Consider A1 A>A3A, where A; and A, are m X m matrices, Az is m x 1,
and Az is 1 x m.

| cost(1,4)

—

—_

[\V]
o

= W
[e=}
(==}
(==}

8/11

Dynamic Programming: Matrix-Chain Multiplication

After solving all subproblems, we obtain:

1 2 3 4

1 | o0 |om®)|om?)|o(m?)

2 0 O(1) |o(m2)o(m?2)

3 0 0 o(1) [o(m?)

4 0 0 0 [om

Next, we apply the “piggyback technique” to generate an optimal
parenthesization.

9/11

Dynamic Programming: Matrix-Chain Multiplication

Define bestSub(i, j) =
@ nil, if i =
@ k, if the best parenthesization for A;Aj;1...A) is
(A/...Ak)(Ak+1...Aj).

1 2 3 4

1 | oW [om®om?)|om?)

2 0 | o [om2|om?)

310 0 | ow |om?

410 0 0 [om

After cost(i,j) is ready for all i,j, we can compute all bestSub(i,j) in
O(n?) time.

10/11

Dynamic Programming: Matrix-Chain Multiplication

N2 3 4

i

1 | 0 |om®)|om?)|omm?) A1: mXxXm

2 0 | o [om2)om?) A2' mxm
A3Z mx1

310 0 | om [om?) A4: 1xXm

410 0 0 |om

Example:

bestSub(1,4) = 3, i.e., the best way to calculate A;A;A3A, is

(A1AA3)A,.

Similarly, bestSub(1,3) = 1, i.e., the best way to calculate A; AyA3

is A1(A2A3).

Therefore, an optimal fully parenthesized product of A;A>A3A, is

(A1(A2A3))A,.

11/11

Dynamic Programming: Matrix-Chain Multiplication

