Dynamic Programming: Matrix-Chain Multiplication

Yufei Tao's Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

Dynamic Programming: Matrix-Chain Multiplication

1/11

Matrix-Chain Multiplication

You are given an algorithm \mathcal{A} that, given an $a \times b$ matrix \mathbf{A} and a $b \times c$ matrix \mathbf{B} , can calculate \mathbf{AB} in O(abc) time. You need to use \mathcal{A} to calculate the product of $\mathbf{A}_1\mathbf{A}_2...\mathbf{A}_n$ where \mathbf{A}_i is an $a_i \times b_i$ matrix for $i \in [1, n]$. This implies that $b_{i-1} = a_i$ for $i \in [2, n]$, and the final result is an $a_1 \times b_n$ matrix.

A trivial strategy is to apply \mathcal{A} to evaluate the product from left to right. However, we may be able to reduce the cost by following a different multiplication order.

2/11

Example

Consider $A_1A_2A_3$ where A_1 and A_2 are $m \times m$ matrices, but A_3 is $m \times 1$.

There are two multiplication orders:

- $(A_1A_2)A_3$. The cost of computing $B = A_1A_2$ is $O(m \cdot m \cdot m) = O(m^3)$ and B is an $m \times m$ matrix. The cost of BA_3 is $O(m \cdot m \cdot 1) = O(m^2)$. The total cost is $O(m^3)$.
- $A_1(A_2A_3)$. The cost of computing $B = A_2A_3$ is $O(m \cdot m \cdot 1) = O(m^2)$ and B is an $m \times 1$ matrix. The cost of A_1B is $O(m \cdot m \cdot 1) = O(m^2)$. The total cost is $O(m^2)$.

Dynamic Programming: Matrix-Chain Multiplication

3/11

伺 ト イ ヨ ト イ ヨ ト

Parenthesizing $A_1A_2...A_n$ at A_k for some $k \in [1, n-1]$ converts the expression to $(A_1...A_k)(A_{k+1}...A_n)$, after which you can parenthesize each of $A_1...A_i$ and $A_{i+1}...A_n$ recursively.

A fully parenthesized product is

- either a single matrix or
- the product of two fully parenthesized products.

For example, if n = 4, then $(A_1A_2)(A_3A_4)$ and $((A_1A_2)A_3)A_4$ are fully parenthesized, but $A_1(A_2A_3A_4)$ is not.

A fully parenthesized product determines a multiplication order that, in turn, determines the computation cost.

Goal: Design an algorithm to find in $O(n^3)$ time a fully parenthesized product with the smallest cost.

Dynamic Programming: Matrix-Chain Multiplication

4/11

伺 ト イヨト イヨト

Recursive Structure

By parenthesizing at A_k , we obtain

$$(\underbrace{\boldsymbol{A}_1...\boldsymbol{A}_k}_{\boldsymbol{B}_1})$$
 $(\underbrace{\boldsymbol{A}_{k+1}...\boldsymbol{A}_n}_{\boldsymbol{B}_2})$,

where \boldsymbol{B}_1 is an $a_1 \times b_k$ matrix and \boldsymbol{B}_2 is an $a_{k+1} \times b_n$ matrix.

The total cost is

cost of computing B_1 + cost of computing B_2 + $O(a_1b_kb_n)$.

Dynamic Programming: Matrix-Chain Multiplication

ъ.

5/11

(日)

We define cost(i, j), where $1 \le i \le j \le n$, to be the smallest achievable cost for calculating $A_{i}...A_{j}$. Our objective is to calculate cost(1, n).

If we parenthesize $A_i...A_j$ at A_k , we obtain

$$\underbrace{(\mathbf{A}_{i}...\mathbf{A}_{k})}_{cost(i,k)}\underbrace{(\mathbf{A}_{k+1}...\mathbf{A}_{j})}_{cost(k+1,j)}.$$

The total cost is

$$cost(i,k) + cost(k+1,j) + O(a_ib_kb_j).$$

Dynamic Programming: Matrix-Chain Multiplication

6/11

< 回 > < 回 > < 回 >

To attain cost(i, j), we should try all possible parenthesizations of $A_{i}...A_{j}$. This implies:

$$cost(i,j) = \begin{cases} O(1) & \text{if } i = j \\ \min_{k=i}^{j-1} (cost(i,k) + cost(k+1,j) + O(a_ib_kb_j)) & \text{if } i < j \end{cases}$$

By dyn. programming, we can compute cost(1, n) in $O(n^3)$ time.

7/11

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Consider $A_1A_2A_3A_4$ where A_1 and A_2 are $m \times m$ matrices, A_3 is $m \times 1$, and A_4 is $1 \times m$.

3

8/11

イロト イボト イヨト イヨト

After solving all subproblems, we obtain:

\sum_{i}^{j}	1	2	3	4
1	O(1)	$O(m^3)$	$O(m^2)$	$O(m^2)$
2	0	O(1)	$O(m^2)$	$O(m^2)$
3	0	0	O(1)	$O(m^2)$
4	0	0	0	O(1)

Next, we apply the "piggyback technique" to generate an optimal parenthesization.

э.

9/11

イロト イポト イヨト イヨト

Define bestSub(i, j) =

• nil, if i = j;

• k, if the best parenthesization for $A_i A_{i+1} \dots A_j$ is $(A_i \dots A_k)(A_{k+1} \dots A_j)$.

\sum_{i}^{j}	1	2	3	4
1	O(1)	$O(m^3)$	$O(m^2)$	$O(m^2)$
2	0	O(1)	$O(m^2)$	$O(m^2)$
3	0	0	O(1)	$O(m^2)$
4	0	0	0	O(1)

After cost(i,j) is ready for all i, j, we can compute all bestSub(i,j) in $O(n^3)$ time.

Dynamic Programming: Matrix-Chain Multiplication

= 200

10/11

・ロト ・ 戸 ・ ・ ヨ ・ ・ コ ・

\sum_{i}^{j}	1	2	3	4	
1	O(1)	$O(m^3)$	$O(m^2)$	$O(m^2)$	$oldsymbol{A}_1:\ m imes m$
2	0	O(1)	$O(m^2)$	$O(m^2)$	$A_2: m \times m$
3	0	0	O(1)	$O(m^2)$	$oldsymbol{A}_3: \ m imes 1 \ oldsymbol{A}_4: \ 1 imes m$
4	0	0	0	O(1)	

Example:

bestSub(1,4)=3, i.e., the best way to calculate $\pmb{A}_1 \pmb{A}_2 \pmb{A}_3 \pmb{A}_4$ is $(\pmb{A}_1 \pmb{A}_2 \pmb{A}_3) \pmb{A}_4.$

Similarly, bestSub(1,3) = 1, i.e., the best way to calculate $A_1A_2A_3$ is $A_1(A_2A_3)$.

Therefore, an optimal fully parenthesized product of $A_1A_2A_3A_4$ is $(A_1(A_2A_3))A_4$.

11/11