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Principle of Dynamic Programming

Remember the output of every subproblem to avoid
re-computation.

Resolve subproblems according to an appropriate order.
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Problem 2 (Regular List 6)

In the lecture, we derived for the rod cutting problem:

opt(n) =
n

max
i=1

(P[i ] + opt(n − i)).

Define bestSub(n) = k if the above maximization is obtained at i = k.

Example

length i 1 2 3 4

price P[i ] 1 5 8 9
opt(i) 1 5 8 10

bestSub(i) 1 2 3 2

How to compute bestSub(1), bestSub(2), ..., bestSub(n) in O(n2) time?
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Solution

First, compute opt(1), opt(2), ..., opt(n) in O(n2) time, as discussed in
the lecture.

For each t ∈ [1, n], compute bestSub(t) as follows:

Identify the k ∈ [1, k] maximizing P[k] + opt(t − k).

This takes O(t) time.

Set bestSub(t) = k .

Doing so for all t ∈ [1, n] takes O(n2) time.

The idea of computing bestSub(t) for all t ∈ [1, n] is called the
piggyback technique.
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Problem 2 (cont.)

In the lecture, we derived for the rod cutting problem:

opt(n) =
n

max
i=1

(P[i ] + opt(n − i)).

Define bestSub(n) = k if the above maximization is obtained at i = k.

Suppose that we have already computed bestSub(1), bestSub(2), ...,

bestSub(n). How do we output an optimal cutting method — namely, a

sequence of lengths achieving the maximum revenue — in O(n) time?
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Solution

1. ℓ← n
2. while ℓ > 0 do
3. output “length bestSub(ℓ)”
4. ℓ← ℓ− bestSub(ℓ)

Example

length i 1 2 3 4

price P[i ] 1 5 8 9
opt(i) 1 5 8 10

bestSub(i) 1 2 3 2

Output:
length 2
length 2
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Problem 3 (Regular List 6)

Let A be an array of n integers. Define function f (a, b) — where
a ∈ [1, n] and b ∈ [1, n] — as follows:

f (a, b) =

{
0 if a ≥ b

(
∑b

c=a A[c]) + minb−1
c=a+1{f (a, c) + f (c , b)} otherwise

Design an algorithm to calculate f (1, n) in O(n3) time.
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Solution

List all the subproblems.
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Solution

f (a, b) = 0 when a ≥ b.

a
b

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

our goal: f(1, n)

= 0
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Solution

f (a, b) = (
∑b

c=a A[c]) + minb−1
c=a+1{f (a, c) + f (c , b)} when a < b.

Find out the dependency relationships.
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f(4, 10)
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Solution

f (a, b) = (
∑b

c=a A[c]) + minb−1
c=a+1{f (a, c) + f (c , b)} when a < b.

Let us start with the gray cells — they correspond to f (a, b) where
a = b − 1. These cells depend on no other cells.
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Solution

Let us continue with the green cells — they correspond to f (a, b) where
a = b − 2. Every such cell depends on two gray cells, which have already
been computed.
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Solution

Let us continue with the red cells — they correspond to f (a, b) where
a = b − 3. Every such cell depends on two gray cells and two green cells,
all of which have been computed.
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Solution

The order can be summarized as follows.

All cells f (a, b) with b − a = 1, each computed in O(1) time.

All cells f (a, b) with b − a = 2, each computed in O(2) time.

...

All cells f (a, b) with b − a = k , each computed in O(k) time.

...

All cells f (a, b) with b− a = n−1, each computed in O(n−1) time.

There are O(n2) values to calculate.

Total time complexity = O(n3).
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Problem 4 (Space Consumption)

In Lecture Notes 8, our algorithm for computing f (n,m) used O(nm)
space. Next, we will reduce the space complexity to O(n +m).

Recall the dependency graph:
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Solution

We can calculate the values in the row-major order, i.e., row 0 to row 3
and left to right in each row. We used O(mn) space because we stored
all the values. Observe, however, that only two rows need to be stored at
any moment .
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Solution

Same idea for the column-major order.

0 1 2 3 4
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A
B
C

So the space complexity is O(min{m, n}), in addition to the O(n +m)

space needed to store x and y .

Dynamic Programming: Piggyback, Dependency, and Space



18/18

Think: Can this trick be used to reduce the space in Problem 2?
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