
Minimum Spanning Trees

Problem  
 Given a connected undirected weighted graph with 

, the goal of the minimum spanning tree (MST) 
problem is to find a spanning tree of the smallest cost.

 How to implement Prim’s algorithm in 
time?

1



Let be a connected undirected graph. Let be a 
function that maps each edge of to a positive integer 
called the weight of .

A spanning tree is a tree satisfying the following conditions:

 The vertex set of is .

 Every edge of is an edge in .

The cost of is the sum of the weights of all the edges in .

2



Example

The second row shows three spanning trees. The cost of the first two trees is 37, 
and that of the right tree is 48.

3



Prim’s algorithm 

The algorithm grows a tree by including one vertex at a time.

At any moment, it divides the vertex set into two parts:

 The set of vertices that are already in .

 The set of other vertices: .

At the end of the algorithm, .

If an edge connects a vertex in and a vertex in , we call it an 
cross edge.

4



Prim’s algorithm 

The algorithm grows a tree by including one vertex at a time. 
At any moment, it divides the vertex set into two parts:

 The set of vertices that are already in .

 The set of other vertices: .

At the end of the algorithm, .

If an edge connects a vertex in and a vertex in , we call it an 
cross edge.

a

b

c d

e

f

g

h

5



Prim’s algorithm 

The algorithm grows a tree by including one vertex at a time. 
At any moment, it divides the vertex set into two parts:

 The set of vertices that are already in .

 The set of other vertices: .

At the end of the algorithm, .

If an edge connects a vertex in and a vertex in , we call it an 
cross edge.

a

b

c d

e

f

g

h

6



Prim’s algorithm 

The algorithm grows a tree by including one vertex at a time. 
At any moment, it divides the vertex set into two parts:

 The set of vertices that are already in .

 The set of other vertices: .

At the end of the algorithm, .

If an edge connects a vertex in and a vertex in , we call it an 
cross edge.

a

b

c d

e

f

g

h

7



Prim’s algorithm 

The algorithm grows a tree by including one vertex at a time. 
At any moment, it divides the vertex set into two parts:

 The set of vertices that are already in .

 The set of other vertices: .

At the end of the algorithm, .

If an edge connects a vertex in and a vertex in , we call it an 
cross edge.

a

b

c d

e

f

g

h

8



Implementing Prim’s algorithm 

To implement the algorithm efficiently, we will enforce the 
following invariant:

 For every vertex , remember which cross edge of 
has the smallest weight — refer to the edge as the lightest 
cross edge of and denote it as best-cross( ).

9



Implementing Prim’s algorithm 

1. = an edge with the smallest weight among all edges.

3. Enforce our invariant:

 For every vertex of 
 best-cross( ) = the lighter edge between and

 If an edge does not exist, treat its weight as infinity. 

2. Set . Initialize a tree with only one edge .

10



Example

Edge is the lightest of all. So, in the beginning . The

MST now has one edge .

11

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cross and weight

a n / a

b n / a

c {c, a}, 3

d nil, ∞

e {e, b}, 10

f {a, f}, 7

g {g, b}, 13

h {a, h}, 8



Implementing Prim’s algorithm 

4. Repeat the following until :

5. Find a cross edge with the smallest weight

/* Without loss of generality, suppose and */

6. Add into , and add edge into 

/* Next, restore the invariant. */

7. for every edge of :
 If then

If best-cross( ) is heavier than edge then

Set best-cross( ) = edge

12



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cross and weight

a n / a

b n / a

c {c, a}, 3

d nil, ∞

e {e, b}, 10

f {a, f}, 7

g {g, b}, 13

h {a, h}, 8

Edge is a lightest cross edge. So, we add to , which is now 
. Add edge into the MST.

13



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cross and weight

a n / a

b n / a

c {c, a}, 3 => n / a

d nil, ∞

e {e, b}, 10

f {a, f}, 7 => {c, f}}, 5

g {g, b}, 13

h {a, h}, 8 => {c, h}, 6

14

Restore the invariant.



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d nil, ∞

e {e, b}, 10

f {c, f}, 5

g {g, b}, 13

h {c, h}, 6

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

15



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d nil, ∞

e {e, b}, 10

f n / a

g {g, b}, 13

h {c, h}, 6

16

{e, f}, 2

Restore the invariant.



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d nil, ∞

e {e, f}, 2

f n / a

g {g, b}, 13

h {c, h}, 6

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

17



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d nil, ∞

e n / a

f n / a

g {g, b}, 13

h {c, h}, 6

18

{e, d}, 12

Restore the invariant.



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d {e, d}, 12

e n / a

f n / a

g {g, b}, 13

h {c, h}, 6

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

19



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d {e, d}, 12

e n / a

f n / a

g {g, b}, 13

h n / a

20

{g, h}, 9

Restore the invariant.



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d {e, d}, 12

e n / a

f n / a

g {g, h}, 9

h n / a

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

21



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d {e, d}, 12

e n / a

f n / a

g n / a

h n / a

22

{d, g}, 11

Restore the invariant.



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d {d, g}, 11

e n / a

f n / a

g n / a

h n / a

Finally, edge is the lightest cross edge. So, we add to , 
which is now . Add edge into the 
MST.

23



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex 𝒗 best-cro(𝒗) and weight

a n / a

b n / a

c n / a

d n / a

e n / a

f n / a

g n / a

h n / a

We have obtained our final MST.

24



Data structure

For a fast implementation, we need a good data structure. 

Let be a set of n tuples of the form . Design a data structure 
to support the following operations:

 Find: given an integer t, find the tuple from where 
; return nothing if the tuple does not exist. 

 Insert: add a new tuple to .

 Delete: given an integer t, delete the tuple from 
where .

 DeleteMin: remove from the tuple with the smallest weight.

We can obtain a structure of space that supports all operations in 
time. See Problem 4 of Regular Exercise 4.

25



Data structure operations 

Edge is the lightest of all. . 

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

6 (id, weight, data) insertions into P.

In general, insertions in time.

vertex weight best-cross

c 3 {c, a}

d ∞ nil

e 10 {e, b} 

f 7 {a, f}

g 13 {g, b}

h 8 {a, h}

26



Data structure operations 

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST. 

Perform DeleteMin to obtain {c, a} in time.

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex weight (key) best-cross

c 3 {c, a}

d ∞ nil

e 10 {e, b} 

f 7 {a, f}

g 13 {g, b}

h 8 {a, h}

27



Data structure operations 

Restore the invariant.

For edge {c, b}, perform a find op. using the id of b => b has no tuple in P.

For edge {c, a}, perform a find op. => a has no tuple in P.

For edge {c, f}, perform a find op. => f has a tuple with weight 7.

As {c, f} is lighter, delete (f, 7, {a, f}) from P and insert (f, 5, {c, f}).  

For edge {c, h}, perform a find op. => h has a tuple with weight 8.

As {c, h} is lighter, delete (h, 8, {a, h}) from P and insert (h, 6, {c, h}).  

Time: ௖ time where ௖ is the degree of c.

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

vertex weight best-cross

d ∞ nil

e 10 {e, b} 

f 7 => 5 {a, f} => {c, f}

g 13 {g, b}

h 8 => 6 {a, h} => {c, h}

28



Data structure operations 

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

Perform DeleteMin to obtain {f, c}in time.

vertex weight best-cross

d ∞ Nil

e 10 {e, b} 

f 5 {c, f}

g 13 {g, b}

h 6 {c, h}

29



Data structure operations 

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Restore the invariant.

For edge {f, a}, perform a find op. using the id of a => a has no tuple in P.

For edge {f, c}, perform a find op. => c has no tuple in P.

For edge {f, e}, perform a find op. => e has a tuple with weight 2.

As {f, e} is lighter, delete (e, 10, {e, b}) from P and insert (e, 2, {e, f}).  

Time: ௙ time where ௙ is the degree of f.

vertex weight best-cross

d ∞ Nil

e 10=>2 {e, b}=>{e, f}

g 13 {g, b}

h 6 {c, h}

30



Data structure operations 

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Perform DeleteMin to obtain {e, f}in time.

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

vertex weight best-cross

d ∞ Nil

e 2 {e, f} 

g 13 {g, b}

h 6 {c, h}

31



Data structure operations 

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Restore the invariant.

vertex weight best-cross

d ∞ => 12 Nil => {e,d}

g 13 {g, b}

h 6 {c, h}

For edge {e, f}, perform a find op. using the id of f => f has no tuple in P.

For edge {e, b}, perform a find op. => b has no tuple in P.

For edge {e, d}, perform a find op. => d has a tuple with weight .

As {e, d} is lighter, delete (d, , Nil) from P and insert (d, 12, {e, d}).  

Time: ௘ time where ௘ is the degree of e.

32



Data structure operations 

Perform DeleteMin to obtain {c, h} in time.

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

33

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8 vertex weight best-cross

d 12 {e,d}

g 13 {g, b}

h 6 {c, h}



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Restore the invariant.

For edge {h, a}, perform a find op. using the id of a => a has no tuple in P.

For edge {h, c}, perform a find op. => c has no tuple in P.

For edge {h, g}, perform a find op. => g has a tuple with weight .

As {h, g} is lighter, delete (g, , {g, b}) from P and insert (g, 9, {g, h}).  

Time: ௛ time where ௛ is the degree of h.

vertex weight best-cross

d 12 {e,d}

g 13 => 9 {g, b} => {g,h}

34



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Perform DeleteMin to obtain {g, h}in time.

Edge is the lightest cross edge. So, we add to , which is 
now . Add edge into the MST.

35

vertex weight best-cross

d 12 {e,d}

g 9 {g,h}



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Restore the invariant.

36

vertex weight best-cross

d 12=>11 {e,d}=>{g,d}

For edge {g, b}, perform a find op. using the id of b => b has no tuple in P.

For edge {g, h}, perform a find op. => h has no tuple in P.

For edge {g, d}, perform a find op. => d has a tuple with weight .

As {g, d} is lighter, delete (d, , {e, d}) from P and insert (g, 11, {g, d}).  

Time: ௚ time where ௚ is the degree of g.



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

Finally, edge is the lightest cross edge. So, we add to , 
which is now . Add edge into the 
MST.

Perform DeleteMin to obtain {g, d}in time.

37

vertex weight best-cross

d 11 {g,d}



Example

1

a

b

c d

e

f

g

h

7

2

12

10

11

5913

33

6

8

We have obtained our final MST.

Total time:

O(

38


