
CSCI3160: Tutorial 3

Problem 1
 -time algorithm for finding the number of

inversions.

Problem 2
 -time algorithm to solve the dominance counting

problem.

Review: Counting inversions

Problem: Given an array of distinct integers, count
the number of inversions.

An inversion is a pair of such that
 .

 .

Review: Counting inversions

Let:
 , .

 The counts of inversions in and are known by solving
the “counting inversion” problem recursively on and .

Review: Counting inversions

Let:
 , .

 The counts of inversions in and are known by solving
the “counting inversion” problem recursively on and .

We need to count the number of crossing inversion
where is in and in .

Review: Counting inversions

Let:
 , .

 The counts of inversions in and are known by solving
the “counting inversion” problem recursively on and .

We need to count the number of crossing inversion
where is in and in .

Binary search
 Sort and , and conduct binary searches ().

Review: Counting inversions

Let:
 , .

 The counts of inversions in and are known by solving
the “counting inversion” problem recursively on and .

We need to count the number of crossing inversion
where is in and in .

Binary search
 Sort and , and conduct binary searches ().

 Let be the worst-case running time of the algorithm on
numbers.


 which solves to ଶ .

Counting inversions: a faster algorithm

Strategy: ask a harder question, and exploit it in the
conquer phase.

Counting inversions and sorting

Strategy: ask a harder question, and exploit it in the
conquer phase.

Given an array of distinct integers, output the
number of inversions and produce an array to store the
integers of in ascending order.

Counting inversions and sorting

Strategy: ask a harder question, and exploit it in the
conquer phase.

Given an array of distinct integers, output the
number of inversions and produce an array to store the
integers of in ascending order.


 , invs; , invs.

Counting inversions and sorting

Strategy: ask a harder question, and exploit it in the
conquer phase.

Given an array of distinct integers, output the
number of inversions and produce an array to store the
integers of in ascending order.


 , invs; , invs.

Exploit subproblem property
 Subarrays are sorted
 Count crossing inversions in O(n) time.

 Merge 2 sorted arrays in O(n) time.

Counting crossing inversions

 Let and be two disjoint sets of n integers.
Assume that is stored in an array , and in an
array . Both and are sorted in ascending
order. Design an algorithm to find the number of such
pairs satisfying the following conditions:
 ଵ

 ଶ



 Your algorithm must finish in O(n) time.

Counting crossing inversions

Method
 Merge and into one sorted list .

Let:
 ,

We will merge them together and in the meantime
maintain the count of crossing inversions.

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

Counting crossing inversions

 Ordered list produced: Nothing yet

 The count of crossing inversions : 0

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Counting crossing inversions

 Ordered list produced: 1

 The count of crossing inversions :

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Counting crossing inversions

 Ordering produced: 1, 2

 The count of crossing inversions : .

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count Newly added: (2,1) is a
crossing inversion

Counting crossing inversions

 Ordering produced: 1, 2, 3

 The count of crossing inversions : .

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count Newly added: (3,1) is a
crossing inversion.

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4

 The count of crossing inversions :

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4, 5

 The count of crossing inversions :

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4, 5, 6

 The count of crossing inversions : .

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4, 5, 6, 7

 The count of crossing inversions :

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8

 The count of crossing inversions : .

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count Newly added count:
(8,1), (8,4), (8,5), (8,6), (8,7)

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9

 The count of crossing inversions : .

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Last count Newly added count:
(9,1), (9,4), (9,5), (9,6), (9,7)

Counting crossing inversions

 Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

 The count of crossing inversions : .

2 3 8 9 10

1 4 5 6 7ଶ

ଵ

index 0 1 2 3 4

Newly added count: #integers
from ଶ already in the ordered
list produced

Last count

Counting inversions

Analysis
 Let be the worst-case running time of the algorithm on

numbers.

Then
 ,

 which solves to .

Dominance counting

Problem
 Give an -time algorithm to solve the dominance

counting problem discussed in the class.

Point dominance definition
 Denote by the set of integers. Given a point in two-

dimensional space , denote by and its x- and y-
coordinates, respectively.

 Given two distinct points and , we say that dominates
if and .

x

y

Dominance counting

Let be a set of n points in . Find, for each point
, the number of points in that are dominated by

.

Dominance counting

Divide: Find a vertical line such that has
points on each side of the line. (k-selection, time).

Dominance counting

Divide:
 = the set of points of on the left of .

 = the set of points of on the right of .

Dominance counting

Divide:
 Solve the dominance counting problem on and

separately.

Dominance counting

Divide:
 Solve the dominance counting problem on and

separately.

 It remains to obtain, for each point , how many points
in it dominates.

Dominance counting

Review: Binary search
 Sort by y-coordinate.

 Then, for each point , we can obtain the number of
points in dominated by using binary search.

Dominance counting: a faster algorithm

Ask a harder question:
 Output the dominance counts and sort by y-coordinate.

Scan the point from by y-coordinate in ascending
order, and scan in the same way synchronously.
 Merge the following two sorted arrays, based on y-coordinates

and obtain the number of points in dominated by .





Dominance counting

Scan the points from by y-coordinate in ascending
order. Do the same on .





ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

Only care about y-coordinates

Dominance counting






 All the points will be stored in this array in ascending order of

y-coordinate.

 To be produced by merging and .

Dominance counting





count



ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



 dominates 0 point in .
ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



 dominates 2 point in

ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



 dominates 2 point in
ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

Dominance counting





count



ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

4

Dominance counting





count



 dominates 4 points in .

ଷ
௬

ଵ
௬

ସ
௬

ଶ
௬

଼
௬

଻
௬

ହ
௬

଺
௬

index

0

1

2

3

4

Dominance counting

 .

 .

count

 .

Current time complexity: .

Dominance counting

Analysis
 Let be the worst-case running time of the algorithm on

points.

 ,

 which solves to .

