
1/1

Some Exercises on the “Three Basic Techniques”

By Yufei Tao’s Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

Some Exercises on the “Three Basic Techniques”

2/1

You have learned three basic techniques in algorithm design:

Recursion

Repeating (till success)

Geometric Series.

In this tutorial, we will discuss some exercises that can be solved using

these techniques.

Some Exercises on the “Three Basic Techniques”

3/1

Exercise 1

Recall that our RAM model has an atomic operation RANDOM(x , y)
which, given integers x , y , returns an integer chosen uniformly at random
from [x , y].

Suppose that you are allowed to call the operation only with x = 1 and
y = 128. Describe an algorithm to obtain a uniformly random number
between 1 and 100. Your algorithm must finish in O(1) expected time.

Some Exercises on the “Three Basic Techniques”

4/1

...

1 2 99 100

...

101 128

Call RANDOM(1,128) and let z be its return value. Output z if it
is in [1, 100].

1 100

...

101 128

...

68

...

z = 68

Otherwise, repeat from the beginning.

1 100

...

101 128

...

120

...

z = 120

Some Exercises on the “Three Basic Techniques”

5/1

We need to call the operator at most twice in expectation because each

time z has probability 100/128 to fall in the range we want. Therefore,

our algorithm finishes in O(1) expected time.

Some Exercises on the “Three Basic Techniques”

6/1

Exercise 2

Suppose that we enforce a harder constraint that you are allowed to call
RANDOM(x , y) only with x = 0 and y = 1. Describe an algorithm to
generate a uniformly random number in [1, n] for an arbitrary integer n.
Your algorithm must finish in O(log n) expected time.

Some Exercises on the “Three Basic Techniques”

7/1

Suppose n is a power of 2; then how can we use recursion to solve this
problem?

1 Set z =RANDOM(x , y).

2 If z = 0, we have a subproblem: generate a uniformly random
number in the first half of the range;
If z = 1, we have a subproblem: generate a uniformly random
number in the second half of the range.

Considering the subproblem solved, we finish the algorithm.

Some Exercises on the “Three Basic Techniques”

8/1

Analysis of the Algorithm

f (1) = O(1)

f (n) ≤ f (n/2) + O(1) , for n > 1

Thus, we have

f (n) = O(log n)

Think: Why does the algorithm require n to be a power of 2?

Some Exercises on the “Three Basic Techniques”

9/1

Next, we will extend our algorithm to support values of n that are not
powers of 2.

First, obtain the smallest power of 2 that is at least n.

Try 1, 2, 4, ..., until reaching m such that n ≤ m < 2n. This takes
O(log n) time.

We have known how to generate a uniformly random number y in [1,m]
in O(log n) time.

If y ≤ n, return y ; otherwise, repeat the algorithm. At most 2 repeats are
needed in expectation. The overall time is there O(log n) in expectation.

Some Exercises on the “Three Basic Techniques”

10/1

Exercise 3

Recall the k-selection problem:

You are given a set S of n integers in an array and an integer
k ∈ [1, n]. Find the k-th smallest integer of S .

Suppose there is a deterministic algorithm A1 which returns the median

of n integers in O(n) time. Can you use A1 as a blackbox to solve

k-selection in O(n) time?

Some Exercises on the “Three Basic Techniques”

11/1

Consider the following algorithm.

1 Get the median v of S from A1(S).

2 Divide S into S1 and S2 where

S1 = the set of elements in S less than or equal to v ;
S2 = the set of elements in S greater than v .

3 If |S1| ≥ k, then return S ′ = S1 and k ′ = k ; else return S ′ = S2 and
k ′ = k − |S1|

Since A1 is deterministic, we always succeed in obtaining a subproblem

with size no larger than ⌈ |S|
2 ⌉.

Some Exercises on the “Three Basic Techniques”

12/1

Analysis of the Algorithm

f (1) = O(1)

f (n) ≤ f (n/2) + O(n)

Thus, f (n) = O(n).

What if A1 returns the ⌈ 4
5n⌉-th smallest integer of n integers in

O(n) time. Can you still use A1 as a blackbox to solve k-selection
in O(n) time?

Some Exercises on the “Three Basic Techniques”

13/1

Instead of shrinking the size of subproblem by half, we shrink it by 4
5 .

We can still use A1 to shrink the problem size by a constant factor.
From the geometric series we know that the total cost will be O(n).

Think: If A1 returns the ⌈ 99
100n⌉-th smallest integer of n integers in

O(n) time, can you still use A1 as a blackbox to solve k-selection
in O(n) time?

Some Exercises on the “Three Basic Techniques”

14/1

Exercise 4

Let’s still focus on the k-selection problem. In the lecture, we shrink the

input size of the subproblem into at most 2
3n. Now, we want to shrink

the input size into at most n
2 . Give an algorithm to achieve the purpose

in O(n) expected time.

Some Exercises on the “Three Basic Techniques”

15/1

A simple solution: run our “ 2n
3 -algorithm” twice. The number of

remaining elements becomes at most 4n
9 .

Some Exercises on the “Three Basic Techniques”

16/1

Next, let us look at another way to achieve the purpose, assuming for
simplicity that n is a multiple of 4.

First, divide the rank space into 4 equal partitions.

n
4

n
4

n
4

n
4

rank

Second, take an element p1 from S uniformly at random. Repeat until
rank(p1) is in range [n4 ,

n
2].

n
4

n
4

n
4

n
4

p1

rank

Some Exercises on the “Three Basic Techniques”

17/1

Third, take an element p2 from S uniformly at random. Repeat until
rank(p2) is in range [12n,

3
4n].

n
4

n
4

n
4

n
4

p1 p2

rank

If k ≤ rank(p1), set S
′ = the set of elements in S less than or equal

to p1, k
′ = k.

If rank(p1) < k < rank(p2), set S
′ = the set of elements in S larger

than p1 and smaller than p2, k
′ = k − rank(p1).

If k ≥ rank(p2), set S
′ = the set of elements in S larger than or

equal to p2, k
′ = k − rank(p2).

Some Exercises on the “Three Basic Techniques”

18/1

n
4

n
4

n
4

n
4

p1 p2

rank

In any case, we have |S ′| ≤ n
4 + n

4 = n
2 .

In expectation, 4 repeats are needed for p1, and 4 repeats for p2 (think:

why?).

Some Exercises on the “Three Basic Techniques”

