All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Yufei Tao's Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

1/20

< ロ > < 同 > < 回 > < 回 >

All-Pairs Shortest Paths (APSP)

Input: Let G = (V, E) be a simple directed graph. Let w be a function that maps each edge in E to an integer, which can be positive, 0, or negative. It is guaranteed that G has no negative cycles.

Output: We want to find a shortest path (SP) from s to t, for all $s, t \in V$. More specifically, the output should be |V| shortest-path trees, each rooted at a distinct vertex in V.

2/20

- ロト - (周ト - (国ト - (国ト))

Shortest path distances: spdist(a, a) = 0, spdist(a, b) = 1, ..., spdist(a, g) = -9 $spdist(b, a) = \infty$, spdist(b, b) = 0, ..., spdist(b, g) = -4... $spdist(g, a) = \infty$, $spdist(g, b) = \infty$, ..., spdist(g, g) = 0

We omit the shortest paths in this example.

3/20

If all the weights are non-negative, we can run Dijkstra's algorithm |V| times. The total time is $O(|V|(|V| + |E|) \log |V|)$.

For the general APSP problem (arbitrary weights), we can run Bellman-Ford's algorithm |V| times. The total time is $O(|V|^2|E|)$.

We will discuss the **Floyd-Warshall algorithm** that solves the (general) APSP problem in $O(|V|^3)$ time. This is never worse, but can be substantially better, than $O(|V|^2|E|)$ because we can safely assume $|E| \ge |V|/2$ (think: why?).

4/20

イロト イポト イヨト イヨト

Set n = |V|. Assign each vertex in V a distinct id from 1 to n.

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

5/20

イロト イボト イヨト イヨト

Define $spdist(i, j | \le k)$ as the smallest length of all paths from the vertex with id *i* to the vertex with id *j* that pass only **intermediate** vertices with **ids** $\le k$.

다 《 문 》 《 토 》 《 토 》 원 이 이 야 6/20

 $spdist(i, j | \le 0)$ equals

- 0, if *i* = *j*;
- w(i,j), if $(i,j) \in E$;
- ∞ , otherwise.

Lemma: It holds for all $i, j, k \in [1, n]$ that $spdist(i, j | \le k) =$ $\min \begin{cases} spdist(i, j | \le k - 1) \\ spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \end{cases}$

Observe that $spdist(i, j | \le n) = spdist(i, j)$. Our goal is therefore to compute $spdist(i, j | \le n)$ for all $i, j \in [1, n]$.

ъ.

7/20

イロト イポト イラト イラト

Proof of the lemma.

Direction 1:

$$spdist(i, j | \le k) \le$$

$$\min \begin{cases} spdist(i, j | \le k - 1) \\ spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \end{cases}$$

This is easy and left to you.

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Ξ.

8/20

イロト イヨト イモト イモト

Direction 2:

$$spdist(i, j | \le k) \ge$$

$$\min \begin{cases} spdist(i, j | \le k - 1) \\ spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \end{cases}$$

Consider any path π from (vertex) *i* to *j* that

- goes through only vertices in {1,2,...,k};
- has length $spdist(i, j | \le k)$;
- uses the **fewest** edges among all paths satisfying the previous two bullets.

Case 1: k is not on π .

Then, the length of π must be at least $spdist(i, j | \le k - 1)$ (think: why?). Hence, $spdist(i, j | \le k) \ge spdist(i, j | \le k - 1)$

9/20

化白色 化晶色 化氯化 化氯化二氯化

Case 2: k is on π .

Observe that k can appear on π only once (think: why?).

Length of π_1 must be at least $spdist(i, k | \le k - 1)$ (think: why?). Length of π_2 must be at least $spdist(k, j | \le k - 1)$.

Therefore:

 $\begin{array}{lll} \textit{spdist}(i,j \mid k) &=& \text{length of } \pi \\ &=& \text{length of } \pi_1 + \text{length of } \pi_2 \\ &\geq& \textit{spdist}(i,k \mid \leq k-1) + \textit{spdist}(k,j \mid \leq k-1). \end{array}$

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

-

10/20

・ロト ・ 一下・ ・ ヨト ・ ヨト

Lemma: It holds for all $i, j, k \in [1, n]$ that

$$spdist(i, j \mid \leq k) =$$

min $\begin{cases} spdist(i, j \mid \leq k - 1) \\ spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \end{cases}$

Goal: Compute $spdist(i, j | \le n)$ for all $i, j \in [1, n]$.

The lemma suggests a dynamic programming algorithm that computes $spdist(i, j| \le n)$ for all $i, j \in [1, n]$ in $O(|V|^3)$ total time.

Sub-problems: $spdist(i, j | \le k)$ for all $i, j \in [1, n]$ and $k \in [0, n]$. Think: Dependency graph for the sub-problems?

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

11/20

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

First, decide $spdist(i, j | \leq 0)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
	а	0	1	∞	-6	∞	∞	∞
	Ь	∞	0	1	∞	∞	∞	∞
$b \neq d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	∞
$\int -\frac{1}{2} \int \frac{1}{f} \frac{1}{2} \int 1$	d	∞	∞	∞	0	∞	∞	-3
$1 - \frac{1}{2} - \frac{5}{5} - \frac{5}{5}$	е	∞	∞	∞	5	0	∞	∞
e 1	f	∞	∞	∞	∞	1	0	∞
	g	∞	∞	∞	∞	∞	2	0

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

3

12/20

Then, compute $spdist(i, j | \leq 1)$ for all $i, j \in [1, 7]$. No changes.

	vertex v	а	Ь	с	d	е	f	g
	а	0	1	∞	-6	∞	∞	∞
	Ь	∞	0	1	∞	∞	∞	∞
$b = d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	∞
$\int \frac{1}{2} \int \frac{1}{4} $	d	∞	∞	∞	0	∞	∞	-3
1 -2 5 -5	е	∞	∞	∞	5	0	∞	∞
e 1	f	∞	∞	∞	∞	1	0	∞
	g	∞	∞	∞	∞	∞	2	0

э

13/20

Example
spdist
$$(i, j | \le k) =$$

min
$$\begin{cases} spdist(i, j | \le k - 1) \\ spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \end{cases}$$

Compute $spdist(i, j | \leq 2)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
	а	0	1	2	-6	∞	∞	∞
	Ь	∞	0	1	∞	∞	∞	∞
$b \neq d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	∞
f = 2	d	∞	∞	∞	0	∞	∞	-3
1 5 5	е	∞	∞	∞	5	0	∞	∞
	f	∞	∞	∞	∞	1	0	∞
	g	∞	∞	∞	∞	∞	2	0

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

э.

14/20

Example
spdist
$$(i, j | \le k) =$$

min
$$\begin{cases} spdist(i, j | \le k - 1) \\ spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \end{cases}$$

Compute $spdist(i, j | \leq 3)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
	а	0	1	2	-6	1	∞	∞
	Ь	∞	0	1	-1	0	∞	∞
$b \neq d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	∞
f = 2	d	∞	∞	∞	0	∞	∞	-3
1 5 5	е	∞	∞	∞	5	0	∞	∞
	f	∞	∞	∞	∞	1	0	∞
	g	∞	∞	∞	∞	∞	2	0

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

э.

15/20

Example

$$spdist(i, j \mid \leq k) =$$

min $\begin{cases} spdist(i, j \mid \leq k - 1) \\ spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \end{cases}$

Compute $spdist(i, j | \leq 4)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
1 × .	а	0	1	2	-6	1	∞	-9
	Ь	∞	0	1	-1	0	∞	-4
$b \neq d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	-5
$\int 2 f + \frac{f^2}{f^2}$	d	∞	∞	∞	0	∞	∞	-3
1 5 5	е	∞	∞	∞	5	0	∞	2
	f	∞	∞	∞	∞	1	0	∞
	g	∞	∞	∞	∞	∞	2	0

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

э.

16/20

Example
spdist
$$(i, j | \le k) =$$

min
$$\begin{cases} spdist(i, j | \le k - 1) \\ spdist(i, k | \le k - 1) + spdist(k, j | \le k - 1) \end{cases}$$

Compute $spdist(i, j | \leq 5)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
	а	0	1	2	-6	1	∞	-9
	Ь	∞	0	1	-1	0	∞	-4
$b \neq d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	-5
f = 2	d	∞	∞	∞	0	∞	∞	-3
1 5 5	е	∞	∞	∞	5	0	∞	2
e 1	f	∞	∞	∞	6	1	0	3
	g	∞	∞	∞	∞	∞	2	0

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

17/20

Example
spdist(i, j |
$$\leq k$$
) =
min $\begin{cases} spdist(i, j | \leq k - 1) \\ spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1) \end{cases}$

Compute $spdist(i, j | \leq 6)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
	а	0	1	2	-6	1	∞	-9
	Ь	∞	0	1	-1	0	∞	-4
$b \neq d = -3 \qquad g$	с	∞	∞	0	-2	-1	∞	-5
f = 2	d	∞	∞	∞	0	∞	∞	-3
1 5 5	е	∞	∞	∞	5	0	∞	2
e 1	f	∞	∞	∞	6	1	0	3
	g	∞	∞	∞	8	3	2	0

э.

18/20

Example
spdist(i, j |
$$\leq k$$
) =
min
$$\begin{cases} spdist(i, j | \leq k - 1) \\ spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1) \end{cases}$$

Compute $spdist(i, j | \leq 7)$ for all $i, j \in [1, 7]$.

	vertex v	а	Ь	с	d	е	f	g
1 × .	а	0	1	2	-6	-6	-7	-9
	Ь	∞	0	1	-1	-1	-2	-4
$b \neq -3 \qquad g$	с	∞	∞	0	-2	-2	-3	$^{-5}$
f = 2	d	∞	∞	∞	0	0	-1	-3
$1 - \frac{2}{5} - \frac{5}{5}$	е	∞	∞	∞	5	0	4	2
e 1	f	∞	∞	∞	6	1	0	3
	g	∞	∞	∞	8	3	2	0

Now we are done.

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

э.

19/20

We have focused on computing the shortest path distances spdist(s, t) for all $s, t \in V$. How to extend the algorithm to report the shortest path tree rooted at each $s \in V$?

Hint: The piggyback technique.

20/20

周 ト イ ヨ ト イ ヨ ト