All-Pairs Shortest Paths:

The Floyd-Warshall algorithm

Yufei Tao's Teaching Team

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

(All-Pairs Shortest Paths (APSP))

Input: Let G = (V, E) be a simple directed graph. Let w be a function
that maps each edge in E to an integer, which can be positive, 0, or
negative. It is guaranteed that G has no negative cycles.

Output: We want to find a shortest path (SP) from s to t, for all
s,t € V. More specifically, the output should be | V| shortest-path trees,
each rooted at a distinct vertex in V.

2/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Shortest path distances:
spdist(a, a) = 0, spdist(a,b) =1, ..., spdist(a,g) = —
spdist(b, a) = oo, spdist(b,b) =0, ..., spdist(b, g) =

spdist(g, a) = oo, spdist(g, b) = oo, ..., spdist(g,g) =0

We omit the shortest paths in this example.

3/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

If all the weights are non-negative, we can run Dijkstra’s algorithm
|V| times. The total time is O(|V|(|V| + |E|) log |V]).

For the general APSP problem (arbitrary weights), we can run
Bellman-Ford's algorithm |V/| times. The total time is O(|V/|?|E]).

We will discuss the Floyd-Warshall algorithm that solves the
(general) APSP problem in O(|V|®) time. This is never worse,
but can be substantially better, than O(|V/|?|E|) because we can
safely assume |E| > |V/|/2 (think: why?).

4/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Set n=|V|.
Assign each vertex in V a distinct id from 1 to n.

Example:

Let us assign to 1 vertex a, 2 to vertex b, ..., 7 to vertex g.

5/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Define spdist(i,j |< k) as the smallest length of all paths from the vertex
with id / to the vertex with id j that pass only intermediate vertices
with ids < k.

Example:

v

cO—lfO
Vertex ids: 1 for a, 2 for b, ..., 7 for g.
spdist(1,5 | 0) = oo, spdist(1,

5
spdist(1,5 | 3) = 1, spdist(1,5
spdist(1,5| 6) = 1, spdist(1,5 |

| 1) = oo, spdist(1,5 | 2) = oo,
| 4) = 1, spdist(1,5 | 5) = 1,
7)=—6

6/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< 0) equals
0 0,ifi=
o w(i,j), if (i,j) € E;

@ 00, otherwise.

Lemma: It holds for all i, j, k € [1, n] that

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Observe that spdist(i,j |< n) = spdist(i,).
Our goal is therefore to compute spdist(i,j |< n) for all i,j € [1, n].

7/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Proof of the lemma.

Direction 1:

spdist(i,j |< k) <

mi spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

This is easy and left to you.

8/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Direction 2:

spdist(i,j |< k) >

[spdist(i,j 1< k—1)
spdist(i, k |< k — 1) + spdist(k,j |< k —1)

Consider any path 7 from (vertex) i to j that
@ goes through only vertices in {1,2, ..., k};
@ has length spdist(i,j |< k);

@ uses the fewest edges among all paths satisfying the previous two
bullets.

Case 1: k is not on .

Then, the length of m must be at least spdist(i,j |< k — 1) (think:
why?). Hence, spdist(i,j |< k) > spdist(i,j |< k — 1)

9/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Case 2: kison .

Observe that k can appear on 7 only once (think: why?).
) k:\/\j
O 0} O

Length of 71 must be at least spdist(i, k |< k — 1) (think: why?).
Length of m, must be at least spdist(k,j |< k —1).

Therefore:

spdist(i,j | k) = length of
= length of m; + length of m;
spdist(i, k |< k — 1) + spdist(k,j |< k —1).

\%

O

10/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

Lemma: It holds for all i, /, k € [1, n] that

spdist(i,j |< k) =

[spdist(i,j 1< k—1)
spdist(i, k |< k — 1) + spdist(k,j |< k — 1)

Goal: Compute spdist(i,j |< n) for all i,j € [1, n].

The lemma suggests a dynamic programming algorithm that com-
putes spdist(i,j| < n) for all i,j € [L,n] in O(|V|?) total time.

Sub-problems: spdist(i,j |< k) for all i,j € [1,n] and k € [0, n].
Think: Dependency graph for the sub-problems?

11/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

First, decide spdist(i,j | < 0) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 oo | —6 00 00 00
b 00 0 1 00 00 00 00
c oo | o 0 -2 | -1 | oo 0o
d oo | oo | oo 0 00 oo | =3
e co | oo | o 5 0 [e%e] [e%e]
f © | o | oo 9] 1 0 o)
g © | 0 | oo | 00 2 0

12/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
"N spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Then, compute spdist(i,j | < 1) for all i,j € [1,7]. No changes.

a vertex v a b c d e f g
a 0 1 oo | —6 00 00 00
b 00 0 1 00 00 00 00
c oo | o 0 -2 | -1 | oo 00
d © | o | oo 0) o | =3
e co | oo | o 5 0 o] o]
f © | o | oo 9] 1 0)
g o | o0 | oo | o] 2 0

13/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
"N spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Compute spdist(i,j | < 2) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 —6 00 00 00
b 00 0 1 00 00 00 00
c oo | o 0 -2 | -1 | oo 00
d © | o | oo 0) o | =3
e co | oo | o 5 0 o] o]
f © | o | oo 9] 1 0)
g o | o0 | oo | o] 2 0

14/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
"N spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Compute spdist(i,j | < 3) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 —6 1 00 00
b 00 0 1 -1 0 00 00
c oo | o 0 -2 | -1 | oo 00
d © | o | oo 0) o | =3
e co | oo | o 5 0 o] o]
f © | o | oo 9] 1 0)
g o | o0 | oo | o] 2 0

15/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
spdist(i, k |< k — 1) + spdist(k,j |< k —1)

Compute spdist(i,j | < 4) for all i,j € [1,7].

a vertex v | a b c d e f g
a 0 1 2 —6 1 co | —9
b) 0 1 -1 0 o | —4
c oo | oo 0 -2 | —-1|oc0 | =5
d > | © | oo 0 o | co | =3
e o0 | oo | oo 5 0 00 2
f oo | oo | o 0o 1 0 0o
g oo | oo | oo 00 00 2 0

16/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
"N spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Compute spdist(i,j | < 5) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 —6 1 o | —9
b 00 0 1 -1 0 oo | —4
c oo | o 0 —2 | -1]| oco0 | =5
d © | o | oo 0) o | =3
e co | oo | o 5 0 o] 2
f © | o | oo 6 1 0 3
g o | o0 | oo | o] 2 0

17/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

mi spdist(i,j |< k —1)
"N spdist(i, k |< k — 1) + spdist(k, j |< k — 1)

Compute spdist(i,j | < 6) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 —6 1 o | —9
b 00 0 1 -1 0 oo | —4
c oo | o 0 —2 | -1]| oco0 | =5
d © | o | oo 0) o | =3
e co | oo | o 5 0 o] 2
f © | o | oo 6 1 0 3
g o | o | oo 8 3 2 0

18/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

spdist(i,j |< k) =

[spdist(i,j 1< k—1)
spdist(i, k |< k — 1) + spdist(k,j |< k —1)

Compute spdist(i,j | < 7) for all i,j € [1,7].

a vertex v a b c d e f g
a 0 1 2 -6 | -6 | —7 | —9
b o | 0 1 -1 -1| -2 | -4
c oo | o 0 -2 | -2| -3 | -5
d 0 | oo | o 0 0 -1 1| -3
e oo | oo | oo 5 0 4 2
f 00 | oo | o 6 1 0 3
1 g oo | o | oo 8 3 2 0

Now we are done.

19/20

All-Pairs Shortest Paths: The Floyd-Warshall algorithm

We have focused on computing the shortest path distances
spdist(s, t) for all s,t € V. How to extend the algorithm to report
the shortest path tree rooted at each s € V7

Hint: The piggyback technique.

20/20
All-Pairs Shortest Paths: The Floyd-Warshall algorithm

