CSCI3160: Special Exercise Set 5

Prepared by Yufei Tao

Problem 1. Consider the alphabet Σ with letters a, b, c, d, e, f, g, h whose frequencies are 3%, 5%, 10%, 12%, 14% 16%, 18%, and 22%, respectively. Use Huffman's algorithm to find a prefix code on Σ that has the smallest average length.

Problem 2. Consider an alphabet Σ that contains *n* letters with their frequencies given, where *n* is a power of 2. Prove: the prefix code constructed using Huffman's algorithm has an average length of *at most* $\lceil \log_2 n \rceil$.

Problem 3. Describe how to implement Huffman's algorithm to ensure a worst-case time complexity of $O(n \log n)$, where n is the size of the alphabet Σ .

Problem 4. Consider the alphabet $\Sigma = \{1, 2, ..., n\}$ for some integer $n \ge 1$. Suppose that the frequency of *i* is *strictly higher than* the frequency of i + 1, for any $i \in [1, n - 1]$. Prove: in an optimal prefix code, for any $i \in [1, n - 1]$, the codeword of *i* cannot be longer than that of i + 1.

Problem 5. Consider an alphabet Σ with *n* letters, all of which have exactly the same frequency. The value of *n* is a power of 2. If we use Huffman's algorithm to generate the codewords for all the letters in Σ , how many bits are there in the shortest codeword?