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(Strongly Connected Com ponent)

Let G = (V, E) be a directed graph.

A strongly connected component (SCC) of G is a subset S of V s.t.

@ for any two vertices u,v € S, G has a path from v to v and a path
from v to u;

@ S is maximal in the sense that we cannot put any more vertex into
S without breaking the above property.
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@ {a,b,c}is an SCC.

@ {a,b,c,d} is not an SCC.

o {d,e, f,k, I} is not an SCC (because we can still add vertex g).
o {e,d,f, k1, g}isan SCC.
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(SCCs are Disjoint)

Lemma 1: Suppose that S; and S, are both SCCs of G. Then,
SNS, = 0.

The proof is easy and left to you.
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Given a directed graph G = (V, E), the goal of the strongly con-
nected components problem is to divide V into disjoint subsets,
each being an SCC.

Example:

We should output: {a, b,c}, {d,e, f, g, k, I}, {h,i}, and {j}.

5/18

Yufei Tao Finding Strongly Connected Components



Step 1: Run DFS on G, and list the vertices by the order they turn black
(i-e., popped from the stack).

If vertex u € V is the i-th turning black, we label u with /.
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i /'h

Start DFS from i and re-start from j.
The following is a possible turn-black order:

@ Note: the order is not unique.

The label of ¢ is 3.

The label of g is 10.
The label of i is 11.
The label of j is 12.
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Step 2: Obtain the reverse graph GV by reversing the directions of all
the edges in G.

Example:

4" 47y
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Input graph Reverse graph
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Step 3: Perform DFS on G™" subject to the following rules:
@ Rule 1: Start at the vertex with the largest label.

@ Rule 2: When a restart is needed, do so from the white vertex with
the largest label.

Output the set of vertices in each DFS-tree as an SCC.
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Vertices in ascending order of label: h, b,c,a,l, k,f,e,d,g,i,].
Reverse graph G"™:

Start DFS from j, which finishes immediately and discovers only j.
@ First SCC: {,}

Restart from 7, which finishes after discovering i and h
@ Second SCC: {i, h}

Restart from g, which finishes after discovering g,e,d,f,/, and k
@ Third SCC: {g,e,d,f, I k}

Restart from a, which finishes after discovering a, b, and c.
@ Fourth SCC: {a, b, c}
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Theorem: Our SCC algorithm finishes in O(|V| + |E|) time.

The proof is left as a regular exercise.

Next, we will prove that the algorithm correctly returns all the SCCs.
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SCC Graph

Suppose that the input graph G has SCCs 51, 5;, ..., S; for some t > 1.
The SCC graph G* is defined as follows:
@ Each vertex in G* is a distinct SCC in G.

@ For every two distinct vertices (a.k.a. SCCs) S; and §;
(1 <i,j <t), G has an edge from §; to S; if some vertex of S;
has an edge in G to a vertex of S;.
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SCC Graph
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For each SCC S; (i € [1, t]), define

label(S;) = maxlabel of v

veSs;
S3
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Vertices in ascending order of label: h, b,c,a,l, k,f,e,d, g,i,]j.
label(S1) = 12, label(S;) = 11, label(S3) = 10, label(S,) = 4
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Lemma 2: If SCC S; (for some i € [1,t]) has an edge to SCC §;
(for some j € [1,t]) in G, then label(S;) > label(S;).

Proof: Let u be the first vertex in S; U S; that turns gray in DFS (i.e., u
is the first vertex in S; U S; discovered by DFS).

@ If u € 5;, u has a white path to every vertex in 5;U S;. By the white
path theorem, u turns black after all the vertices in S; and is the
last vertex in S; turning black. This implies label(S;) > label(S;).

@ If u € 5;, u has a white path to every vertex in S; but no white path
to any vertex in S;. By the white path theorem, u turns black after
all the vertices in S; and before every vertex in S;. This again
implies /abel(S;) > label(S;).
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SCC Graph

Henceforth, we arrange 51, S, ..., S; such that

label(S1) > label(Sp) > ... > label(S;).

Corollary 3: Fix any i € [1,t]. Consider any vertex u € S;. In
G'™" (i.e., the reverse graph), if (v, u) is an incoming edge of u and
yet v ¢ S;, then v belongs to some S; with j > .

Proof: As (v,u) isin G™, G has an edge from u to v. Hence, S; has an
edge to S; in G*°.

By Lemma 2, label(S;) > label(S;), which means j > i. O
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Correctness

Lemma 4: Consider the DFS on G™ (in Step 3 of our algorithm).
For each i € [1, t], S; is exactly the set of vertices in the /-th DFS-
tree produced.

Proof: We will prove the claim by induction on /.

Consider i = 1. Let u be the vertex in S; having the largest label; u is
the root of the first DFS-tree. Consider the beginning moment of the
first DFS on G™.

@ As S; is an SCC, u has a white path to every other vertex in S;.
@ By Corollary 3, u has no white path to any vertex outside S;.

By the white path theorem, all and only the vertices in S; are
descendants of u in the first DFS tree. The claim thus holds for i = 1.
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Correctness

Proof (cont.): Assuming that the claim holds for i = k — 1 (where

k > 2), next we prove its correctness for i = k. Let u be the vertex in S
having the largest label; u is the root of the k-th DFS-tree. Consider the
beginning moment of the k-th DFS on G".

@ All the vertices in 51,55, ..., Sx_1 are black.
@ As S is an SCC, u has a white path to every other vertex in Sk.

@ By Corollary 3, u has no white path to any vertex in
Sk-‘rl) 5k+2a (X2} St-

By the white path theorem, all and only the vertices in Sy are descendants
of u in the k-th DFS tree. The claim thus holds for i = k. O
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