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A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

Example: t = ABCDEF

The following are subsequences of t: ABD, ACDF, and ABCDEF.
The following are not: ACB, ACG, and BDFE.

We denote by |s| the length of s.
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(The Longest Common Subsequence Problem)

Given two strings x and y, find a common subsequence z of x and y with
the maximum length.

We will refer to z as a longest common subsequence (LCS) of x and y.

Example: If x = ABCBDAB and y = BDCABA, then BCBA is an LCS
of x and y, so is BCAB.

If x = () (empty string) and y = BDCABA, their (only) LCS is (.
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(The “Graph” View)

A common subsequence z induces a correspondence graph between the
strings x and y.

@ Identify an occurrence of z in x, and an occurrence of z in y.

@ For each i € [1,]z]], draw an edge between

o the character of x used to match z[i], and
o the character of y used to match z[i].

If a character of x is connected to a character of y, they are said to
match each other.

Example: The graph induced by z = BCBA:
"= (3] [o] (5

/
- PR EE D B

Note: These edges can be ordered from left to right.
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The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.

5/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



n = the length of x; m = the length of y

Theorem:

Statement 1: If x[n] = y[m], there exists an LCS z of x and y
satisfying both of the following:

@ z induces a correspondence graph where x[n] matches y[m];

@ (corollary of the previous bullet) z[1 : |z| — 1] is an LCS of
x[1:n—1] and y[1: m—1].

Statement 2: If x[n] # y[m], any LCS z of x and y satisfies at
least one of the following:

@ zisan LCS of x[1: n—1] and y;
@ zis an LCS of x and y[1: m—1].
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Example:

@ Suppose x = BCBDA and y = BDCABA.
The LCS z = BCBA satisfies Statement 1.

@ Suppose x = ABCBDAB and y = BDCABA.
The LCS z = BCBA satisfies Statement 2.

7/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence



Proof of Statement 1:
Take an arbitrary LCS z of x and y. If x[n] matches y[m] in the
correspondence graph of z, we are done.

Otherwise, consider the rightmost edge e in the correspondence graph.
Suppose that the edge matches x[i] with y[j] for some i € [1, n] and
J € [1,m].

@ If i < nandj < m, we can add an edge between x[n] and y[m] and
thus produce a longer common sequence, giving a contradiction.

@ If i = nbut j < m, replace e with an edge connecting x[n] and y[m].
@ If i < nbut j = m, replace e with an edge connecting x[n] and y[m].

O
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Proof of Statement 2:
Take an arbitrary LCS z of x and y and consider the correspondence
graph induced by z. Let e be the rightmost edge in the graph.

Clearly, e does not connect x[n] and y[m] (because they are not
identical characters). Thus, either e is not incident on x[n], or e is not
incident on y[m]. Due to symmetry, we will discuss only the former
scenario (e not incident on x[n]).

Thus, z also induces a correspondence graph for the input strings
x[1:n—1] and y. This implies that z must be an LCS of x[1: n — 1]
and y. O
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Define x[1: 0] = y[1: 0] = 0 (empty string).
For any i € [0, n] and j € [0, m], define
opt(i,j) = the LCS length of x[1: ] and y[1 :j].

Note that opt(n, m) is the LCS length of x and y.

The theorem tells us

0 ifi=0o0rj=0
opt(i,j)=< opt(i—1,j—1)+1 if i,/ >0 and x[i] = y[j]
max{opt(i,j —1),opt(i —1,/)} if i,j > 0 and x[i] # y[j]

We can compute opt(n, m) in O(nm) time by dynamic programming
(last lecture).
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Wait! We still need to generate an LCS of x and y.

This can be done by slightly modifying the dynamic programming
algorithm without increasing the time complexity. Details are left as a
regular exercise.
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