
1/11

Dynamic Programming 4:
Longest Common Subsequence

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

2/11

A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

Example: t = ABCDEF

The following are subsequences of t: ABD, ACDF, and ABCDEF.
The following are not: ACB, ACG, and BDFE.

We denote by |s| the length of s.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

3/11

The Longest Common Subsequence Problem

Given two strings x and y , find a common subsequence z of x and y with
the maximum length.

We will refer to z as a longest common subsequence (LCS) of x and y .

Example: If x = ABCBDAB and y = BDCABA, then BCBA is an LCS
of x and y , so is BCAB.

If x = ∅ (empty string) and y = BDCABA, their (only) LCS is ∅.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

4/11

The “Graph” View

A common subsequence z induces a correspondence graph between the
strings x and y .

Identify an occurrence of z in x , and an occurrence of z in y .

For each i ∈ [1, |z |], draw an edge between

the character of x used to match z [i], and
the character of y used to match z [i].

If a character of x is connected to a character of y , they are said to
match each other.

Example: The graph induced by z = BCBA:

A B C B BADx =

y = B D C A B A

Note: These edges can be ordered from left to right.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

5/11

The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

6/11

n = the length of x ; m = the length of y

Theorem:

Statement 1: If x [n] = y [m], there exists an LCS z of x and y
satisfying both of the following:

z induces a correspondence graph where x [n] matches y [m];

(corollary of the previous bullet) z [1 : |z | − 1] is an LCS of
x [1 : n − 1] and y [1 : m − 1].

Statement 2: If x [n] ̸= y [m], any LCS z of x and y satisfies at
least one of the following:

z is an LCS of x [1 : n − 1] and y ;

z is an LCS of x and y [1 : m − 1].

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

7/11

Example:

Suppose x = BCBDA and y = BDCABA.
The LCS z = BCBA satisfies Statement 1.

Suppose x = ABCBDAB and y = BDCABA.
The LCS z = BCBA satisfies Statement 2.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

8/11

Proof of Statement 1:
Take an arbitrary LCS z of x and y . If x [n] matches y [m] in the
correspondence graph of z , we are done.

Otherwise, consider the rightmost edge e in the correspondence graph.
Suppose that the edge matches x [i] with y [j] for some i ∈ [1, n] and
j ∈ [1,m].

If i < n and j < m, we can add an edge between x [n] and y [m] and
thus produce a longer common sequence, giving a contradiction.

If i = n but j < m, replace e with an edge connecting x [n] and y [m].

If i < n but j = m, replace e with an edge connecting x [n] and y [m].

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

9/11

Proof of Statement 2:
Take an arbitrary LCS z of x and y and consider the correspondence
graph induced by z . Let e be the rightmost edge in the graph.

Clearly, e does not connect x [n] and y [m] (because they are not
identical characters). Thus, either e is not incident on x [n], or e is not
incident on y [m]. Due to symmetry, we will discuss only the former
scenario (e not incident on x [n]).

Thus, z also induces a correspondence graph for the input strings
x [1 : n − 1] and y . This implies that z must be an LCS of x [1 : n − 1]
and y .

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

10/11

Define x [1 : 0] = y [1 : 0] = ∅ (empty string).

For any i ∈ [0, n] and j ∈ [0,m], define

opt(i , j) = the LCS length of x [1 : i] and y [1 : j].

Note that opt(n,m) is the LCS length of x and y .

The theorem tells us

opt(i , j) =


0 if i = 0 or j = 0

opt(i − 1, j − 1) + 1 if i , j > 0 and x [i] = y [j]

max{opt(i , j − 1), opt(i − 1, j)} if i , j > 0 and x [i] ̸= y [j]

We can compute opt(n,m) in O(nm) time by dynamic programming

(last lecture).

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

11/11

Wait! We still need to generate an LCS of x and y .

This can be done by slightly modifying the dynamic programming

algorithm without increasing the time complexity. Details are left as a

regular exercise.

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

