Dynamic Programming 4:

Longest Common Subsequence

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

1/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

A string s is a subsequence of another string t if either s = t or we can
convert t to s by deleting characters.

Example: t = ABCDEF

The following are subsequences of t: ABD, ACDF, and ABCDEF.
The following are not: ACB, ACG, and BDFE.

We denote by |s| the length of s.

2/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

(The Longest Common Subsequence Problem)

Given two strings x and y, find a common subsequence z of x and y with
the maximum length.

We will refer to z as a longest common subsequence (LCS) of x and y.

Example: If x = ABCBDAB and y = BDCABA, then BCBA is an LCS
of x and y, so is BCAB.

If x = () (empty string) and y = BDCABA, their (only) LCS is (.

3/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

(The “Graph” View)

A common subsequence z induces a correspondence graph between the
strings x and y.

@ Identify an occurrence of z in x, and an occurrence of z in y.

@ For each i € [1,]z]], draw an edge between

o the character of x used to match z[i], and
o the character of y used to match z[i].

If a character of x is connected to a character of y, they are said to
match each other.

Example: The graph induced by z = BCBA:
"= (3] [o] (5

/
- PR EE D B

Note: These edges can be ordered from left to right.

4/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

The key to solving the problem is to identify its underlying
recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.

5/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

n = the length of x; m = the length of y

Theorem:

Statement 1: If x[n] = y[m], there exists an LCS z of x and y
satisfying both of the following:

@ z induces a correspondence graph where x[n] matches y[m];

@ (corollary of the previous bullet) z[1 : |z| — 1] is an LCS of
x[1:n—1] and y[1: m—1].

Statement 2: If x[n] # y[m], any LCS z of x and y satisfies at
least one of the following:

@ zisan LCS of x[1: n—1] and y;
@ zis an LCS of x and y[1: m—1].

6/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

Example:

@ Suppose x = BCBDA and y = BDCABA.
The LCS z = BCBA satisfies Statement 1.

@ Suppose x = ABCBDAB and y = BDCABA.
The LCS z = BCBA satisfies Statement 2.

7/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

Proof of Statement 1:
Take an arbitrary LCS z of x and y. If x[n] matches y[m] in the
correspondence graph of z, we are done.

Otherwise, consider the rightmost edge e in the correspondence graph.
Suppose that the edge matches x[i] with y[j] for some i € [1, n] and
J € [1,m].

@ If i < nandj < m, we can add an edge between x[n] and y[m] and
thus produce a longer common sequence, giving a contradiction.

@ If i = nbut j < m, replace e with an edge connecting x[n] and y[m].
@ If i < nbut j = m, replace e with an edge connecting x[n] and y[m].

O

8/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

Proof of Statement 2:
Take an arbitrary LCS z of x and y and consider the correspondence
graph induced by z. Let e be the rightmost edge in the graph.

Clearly, e does not connect x[n] and y[m] (because they are not
identical characters). Thus, either e is not incident on x[n], or e is not
incident on y[m]. Due to symmetry, we will discuss only the former
scenario (e not incident on x[n]).

Thus, z also induces a correspondence graph for the input strings
x[1:n—1] and y. This implies that z must be an LCS of x[1: n — 1]
and y. O

9/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

Define x[1: 0] = y[1: 0] = 0 (empty string).
For any i € [0, n] and j € [0, m], define
opt(i,j) = the LCS length of x[1:] and y[1 :j].

Note that opt(n, m) is the LCS length of x and y.

The theorem tells us

0 ifi=0o0rj=0
opt(i,j)=< opt(i—1,j—1)+1 if i,/ >0 and x[i] = y[j]
max{opt(i,j —1),opt(i —1,/)} if i,j > 0 and x[i] # y[j]

We can compute opt(n, m) in O(nm) time by dynamic programming
(last lecture).

10/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

Wait! We still need to generate an LCS of x and y.

This can be done by slightly modifying the dynamic programming
algorithm without increasing the time complexity. Details are left as a
regular exercise.

11/11

Yufei Tao Dynamic Programming 4: Longest Common Subsequence

