Dynamic Programming 3: Dependency

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 3: Dependency

Recall: Principle of dynamic programming

Resolve subproblems according to a certain order. Remember the
output of every subproblem to avoid re-computation.

Sometimes, the order may not be immediately obvious. To figure out a
working order, we need to look at the subproblems’ dependency.

Yufei Tao Dynamic Programming 3: Dependency

Define a string as a sequence of characters.
A string s with length ¢ can be stored in an array of length /.
We use s[/] to represent the i-th char of s, for i € [1,/].

Given /,j s.t. 1 </ <j </, we use s[i: j]| to represent the sequence
s[i]s[i + 1]...s[j], which is called a substring of s.

Example: If s = ABCD, then s[2] = B and s[2 : 4] = BCD.

Yufei Tao Dynamic Programming 3: Dependency

Problem
x = a string of length n
y = a string of length m

Consider function f(i,j) defined for any i € [0, n] and j € [0, m]:

0 ifi=0orj=0
fli,jy=qf(—1,;-1)+1 if i,j>0and x[i] = y[j]

Goal: Compute f(n, m).

Example: Let x = ABC and y = BDCA.
Then f(2,1) = f(2,2) = f(2,3) =1 and 7(3,3) = f(3,4) = 2.

Yufei Tao Dynamic Programming 3: Dependency

A subproblem depends on another if the output of the latter is
needed to solve the former.

0 ifi=0o0rj=0
f(i,j))y=<9f(i—1,j—1)+1 if i,j > 0 and x[i] = y[J]
max{f(i,j - 1)7 f(l - 17./)} if ’7./ >0 and X[I] 7é y[’]
Subproblem (i, j) may depend on
@ one subproblem f(i —1,j — 1) or
@ two subproblems f(i,j — 1) and f(i — 1,).

Which case it is depends on whether x[i] = y[j].

Yufei Tao Dynamic Programming 3: Dependency

Example: x = ABC and y = BDCA.

The dependency graph:

0 1 2 3 4
|y|B[D|C|A]

0 T "L #

1 A . i i .'L L
2 B La» .L*’ a»l
3 C —» '4» v —» v

The cell at row i € [0, 3] and column j € [0, 4] represents subprob-
lem £(i,J).

For example, f(3,4) depends on f(3,3) and f(2,4), while f(3,3)
depends only on f(2,2). Each arrow direction indicates the in-
tended computation order, e.g., both 7(3,3) and 7(2,4) must be
tackled before (3, 4).

Yufei Tao Dynamic Programming 3: Dependency

To solve all subproblems with dynamic programming, we need to
find a topological order.

This is an ordering of all subproblems satisfying the following con-
dition: if subproblem A depends on subproblem B, then A must
appear after B in the ordering.

Any topological order can be deployed for dynamic programming.

Yufei Tao Dynamic Programming 3: Dependency

For function

0 ifi=0o0rj=0
fli,j))=<f(i—1,j—1)+1 if i,j > 0and x[i] = y[j]
max{f(i,j —1),f(i—1,j)} ifi,j>0and x[i] # y[j]

we can use either the row-major order or the column-major order.

Example: x = ABC and y = BDCA.

0 1 2 3 4
|y [B|D|C|A|

0 T < |'L

1 Al "%l +¥
2 B R M
3 C[%" T8Y

Yufei Tao Dynamic Programming 3: Dependency

0 ifi=0orj=0
Fi,)= fli—1,j—1)+1 if i,j > 0 and x[i] = y[j]
max{f(i,j — 1), f(i —1,j)} ifi,j >0 and x[i] # y[j]

For any f(i,/), we can compute it in O(1) time, given the outputs of the
subproblems it depends on.

We can therefore compute f(n, m) in O(nm) time
(the number of subproblems is O(nm)).

Yufei Tao Dynamic Programming 3: Dependency

