
1/9

Dynamic Programming 3: Dependency

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 3: Dependency



2/9

Recall: Principle of dynamic programming

Resolve subproblems according to a certain order. Remember the
output of every subproblem to avoid re-computation.

Sometimes, the order may not be immediately obvious. To figure out a

working order, we need to look at the subproblems’ dependency.

Yufei Tao Dynamic Programming 3: Dependency



3/9

Define a string as a sequence of characters.

A string s with length ℓ can be stored in an array of length ℓ.

We use s[i ] to represent the i-th char of s, for i ∈ [1, ℓ].

Given i , j s.t. 1 ≤ i ≤ j ≤ ℓ, we use s[i : j ] to represent the sequence
s[i ]s[i + 1]...s[j ], which is called a substring of s.

Example: If s = ABCD, then s[2] = B and s[2 : 4] = BCD.

Yufei Tao Dynamic Programming 3: Dependency



4/9

Problem
x = a string of length n
y = a string of length m

Consider function f (i , j) defined for any i ∈ [0, n] and j ∈ [0,m]:

f (i , j) =


0 if i = 0 or j = 0

f (i − 1, j − 1) + 1 if i , j > 0 and x [i ] = y [j ]

max{f (i , j − 1), f (i − 1, j)} if i , j > 0 and x [i ] ̸= y [j ]

Goal: Compute f (n,m).

Example: Let x = ABC and y = BDCA.
Then f (2, 1) = f (2, 2) = f (2, 3) = 1 and f (3, 3) = f (3, 4) = 2.

Yufei Tao Dynamic Programming 3: Dependency



5/9

A subproblem depends on another if the output of the latter is
needed to solve the former.

f (i , j) =


0 if i = 0 or j = 0

f (i − 1, j − 1) + 1 if i , j > 0 and x [i ] = y [j ]

max{f (i , j − 1), f (i − 1, j)} if i , j > 0 and x [i ] ̸= y [j ]

Subproblem f (i , j) may depend on

one subproblem f (i − 1, j − 1) or

two subproblems f (i , j − 1) and f (i − 1, j).

Which case it is depends on whether x [i ] = y [j ].

Yufei Tao Dynamic Programming 3: Dependency



6/9

Example: x = ABC and y = BDCA.

The dependency graph:

0

y B D C A

x
A
B
C

1 2 3 4

0

1

2
3

The cell at row i ∈ [0, 3] and column j ∈ [0, 4] represents subprob-
lem f (i , j).

For example, f (3, 4) depends on f (3, 3) and f (2, 4), while f (3, 3)
depends only on f (2, 2). Each arrow direction indicates the in-
tended computation order, e.g., both f (3, 3) and f (2, 4) must be
tackled before f (3, 4).

Yufei Tao Dynamic Programming 3: Dependency



7/9

To solve all subproblems with dynamic programming, we need to
find a topological order.

This is an ordering of all subproblems satisfying the following con-
dition: if subproblem A depends on subproblem B, then A must
appear after B in the ordering.

Any topological order can be deployed for dynamic programming.

Yufei Tao Dynamic Programming 3: Dependency



8/9

For function

f (i , j) =


0 if i = 0 or j = 0

f (i − 1, j − 1) + 1 if i , j > 0 and x [i ] = y [j ]

max{f (i , j − 1), f (i − 1, j)} if i , j > 0 and x [i ] ̸= y [j ]

we can use either the row-major order or the column-major order.

Example: x = ABC and y = BDCA.

0

y B D C A

x
A
B
C

1 2 3 4

0

1

2
3

Row-major: F (0, 0), F (0, 1), ..., F (0, 4), F (1, 0), ..., F (1, 4), ...
Col-major: F (0, 0), F (1, 0), ..., F (3, 0), F (0, 1), ..., F (3, 1), ...

Yufei Tao Dynamic Programming 3: Dependency



9/9

f (i , j) =


0 if i = 0 or j = 0

f (i − 1, j − 1) + 1 if i , j > 0 and x [i ] = y [j ]

max{f (i , j − 1), f (i − 1, j)} if i , j > 0 and x [i ] ̸= y [j ]

For any f (i , j), we can compute it in O(1) time, given the outputs of the
subproblems it depends on.

We can therefore compute f (n,m) in O(nm) time

(the number of subproblems is O(nm)).

Yufei Tao Dynamic Programming 3: Dependency


