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Recall: Principle of dynamic programming

Resolve subproblems according to a certain order. Remember the
output of every subproblem to avoid re-computation.

Sometimes, the order may not be immediately obvious. To figure out a
working order, we need to look at the subproblems’ dependency.
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Define a string as a sequence of characters.
A string s with length ¢ can be stored in an array of length /.
We use s[/] to represent the i-th char of s, for i € [1,/].

Given /,j s.t. 1 </ <j </, we use s[i: j]| to represent the sequence
s[i]s[i + 1]...s[j], which is called a substring of s.

Example: If s = ABCD, then s[2] = B and s[2 : 4] = BCD.
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Problem
x = a string of length n
y = a string of length m

Consider function f(i,j) defined for any i € [0, n] and j € [0, m]:

0 ifi=0orj=0
fli,jy=qf(—1,;-1)+1 if i,j>0and x[i] = y[j]

Goal: Compute f(n, m).

Example: Let x = ABC and y = BDCA.
Then f(2,1) = f(2,2) = f(2,3) =1 and 7(3,3) = f(3,4) = 2.
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A subproblem depends on another if the output of the latter is
needed to solve the former.

0 ifi=0o0rj=0
f(i,j))y=<9f(i—1,j—1)+1 if i,j > 0 and x[i] = y[J]
max{f(i,j - 1)7 f(l - 17./)} if ’7./ >0 and X[I] 7é y[’]
Subproblem (i, j) may depend on
@ one subproblem f(i —1,j — 1) or
@ two subproblems f(i,j — 1) and f(i — 1,).

Which case it is depends on whether x[i] = y[j].
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Example: x = ABC and y = BDCA.

The dependency graph:
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The cell at row i € [0, 3] and column j € [0, 4] represents subprob-
lem £(i,J).

For example, f(3,4) depends on f(3,3) and f(2,4), while f(3,3)
depends only on f(2,2). Each arrow direction indicates the in-
tended computation order, e.g., both 7(3,3) and 7(2,4) must be
tackled before (3, 4).

Yufei Tao Dynamic Programming 3: Dependency



To solve all subproblems with dynamic programming, we need to
find a topological order.

This is an ordering of all subproblems satisfying the following con-
dition: if subproblem A depends on subproblem B, then A must
appear after B in the ordering.

Any topological order can be deployed for dynamic programming.
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For function

0 ifi=0o0rj=0
fli,j))=<f(i—1,j—1)+1 if i,j > 0and x[i] = y[j]
max{f(i,j —1),f(i—1,j)} ifi,j>0and x[i] # y[j]

we can use either the row-major order or the column-major order.

Example: x = ABC and y = BDCA.

0 1 2 3 4
|y [B|D|C|A|

0 T < |'L

1 Al "%l +¥
2 B R M
3 C[ %" T8Y

Yufei Tao Dynamic Programming 3: Dependency



0 ifi=0orj=0
Fi, )= fli—1,j—1)+1 if i,j > 0 and x[i] = y[j]
max{f(i,j — 1), f(i —1,j)} ifi,j >0 and x[i] # y[j]

For any f(i,/), we can compute it in O(1) time, given the outputs of the
subproblems it depends on.

We can therefore compute f(n, m) in O(nm) time
(the number of subproblems is O(nm)).
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