Dynamic Programming 1: Pitfall of Recursion

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



Today, we will start a series of lectures on dynamic programming,
which is a technique for accelerating recursive algorithms.

Remark: Despite the word “programming”, the technique has
nothing to do with programming languages.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



Problem: Let A be an array of n positive integers.

Consider function

0 if k =0
k) = {maxf-‘_l(A[i] +f(k—1) if1<k<n

Goal: Compute f(n).

Example: Consider the following array A:

i |12 3 4
AlT[T 5 8 9

Then, £(1) =1,f(2) =5, f(3) = 8, and £(4) = 10.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



(Pitfall of Recu rsion)

Consider the following recursive algorithm for computing f (k).

f(k)

1. if k =0 then return 0

2. ans + —o0

3. fori<+ 1to k do

4. tmp < A[il+ f(k — i)

5 if tmp > ans then ans < tmp
6. return ans

Computing f(n) with the above algorithm incurs running time
Q(2") (left as a regular exercise).

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



(Pitfall of Recursion)

f(k)

1. if k =0 then return 0

2. ans < —oo

3. fori+ 1to k do

4. tmp <« Alil+ f(k — 1)

5 if tmp > ans then ans < tmp
6. return ans

Why is the algorithm so slow?

Answer: It computes f(x) for the same x repeatedly!

How many times do we need to call f(0) in computing (1), f(2),
..., and f(6), respectively?

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



Pitfall of recursion:
A recursive algorithm does considerable redundant work if the same
subproblem is encountered over and over again.

Antidote: dynamic programming.

Dynamic Programming 1: Pitfall of Recursion



Principle of dynamic programming

Resolve subproblems according to a certain order. Remember the
output of every subproblem to avoid re-computation.

Dynamic Programming 1: Pitfall of Recursion



Problem: Let A be an array of n positive integers.

5 if k=0
fli) = {maxf‘_l(A[i] +f(k—i)) fl<k<n

Goal: Compute f(n).

Order of subproblems: (1), ..., f(n).

Resolve subproblem f(1): O(1) time
Resolve subproblem f(2): O(2) time, given f(1).

Resolve subproblem f(k): O(k) time, given f(1), ..., f(k — 1).
Resolve subproblem f(n): O(n) time, given f(1), ..., f(n—1).

In total: O(n?) time.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



Pseudocode of our algorithm:

dyn-prog

1. initialize an array ans of size n

2. define special value ans[0] < 0

3. for k< 1tondo

/* assuming f(0), f(1),...,f(k — 1) ready, compute f(k) */

4. ans[k] < —oo

5. for i < 1 to k do

6. tmp < A[i] + ans[k — i]

7. if tmp > ans[k] then ans[k] < tmp

Time complexity: O(n?).

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



