
1/9

Dynamic Programming 1: Pitfall of Recursion

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



2/9

Today, we will start a series of lectures on dynamic programming,
which is a technique for accelerating recursive algorithms.

Remark: Despite the word “programming”, the technique has
nothing to do with programming languages.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



3/9

Problem: Let A be an array of n positive integers.

Consider function

f (k) =

{
0 if k = 0

maxki=1(A[i ] + f (k − i)) if 1 ≤ k ≤ n

Goal: Compute f (n).

Example: Consider the following array A:

i 1 2 3 4
A[i ] 1 5 8 9

Then, f (1) = 1, f (2) = 5, f (3) = 8, and f (4) = 10.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



4/9

Pitfall of Recursion

Consider the following recursive algorithm for computing f (k).

f(k)
1. if k = 0 then return 0
2. ans ← −∞
3. for i ← 1 to k do
4. tmp ← A[i ]+ f(k − i)
5. if tmp > ans then ans ← tmp
6. return ans

Computing f (n) with the above algorithm incurs running time
Ω(2n) (left as a regular exercise).

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



5/9

Pitfall of Recursion

f(k)
1. if k = 0 then return 0
2. ans ← −∞
3. for i ← 1 to k do
4. tmp ← A[i ]+ f(k − i)
5. if tmp > ans then ans ← tmp
6. return ans

Why is the algorithm so slow?

Answer: It computes f (x) for the same x repeatedly!

How many times do we need to call f(0) in computing f (1), f (2),
..., and f (6), respectively?

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



6/9

Pitfall of recursion:
A recursive algorithm does considerable redundant work if the same
subproblem is encountered over and over again.

Antidote: dynamic programming.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



7/9

Principle of dynamic programming

Resolve subproblems according to a certain order. Remember the
output of every subproblem to avoid re-computation.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



8/9

Problem: Let A be an array of n positive integers.

f (k) =

{
0 if k = 0

maxki=1(A[i ] + f (k − i)) if 1 ≤ k ≤ n

Goal: Compute f (n).

Order of subproblems: f (1), ..., f (n).

Resolve subproblem f (1): O(1) time
Resolve subproblem f (2): O(2) time, given f (1).
...
Resolve subproblem f (k): O(k) time, given f (1), ..., f (k − 1).
...
Resolve subproblem f (n): O(n) time, given f (1), ..., f (n − 1).

In total: O(n2) time.

Yufei Tao Dynamic Programming 1: Pitfall of Recursion



9/9

Pseudocode of our algorithm:

dyn-prog
1. initialize an array ans of size n
2. define special value ans[0]← 0
3. for k ← 1 to n do
/* assuming f (0), f (1), ..., f (k − 1) ready, compute f (k) */
4. ans[k]← −∞
5. for i ← 1 to k do
6. tmp ← A[i ] + ans[k − i ]
7. if tmp > ans[k] then ans[k]← tmp

Time complexity: O(n2).

Yufei Tao Dynamic Programming 1: Pitfall of Recursion


