
1/23

Greedy 3: Huffman Codes

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Greedy 3: Huffman Codes

2/23

Given an alphabet Σ (like the English alphabet), an encoding is a
function that maps each letter in Σ to a binary string, called a codeword.

For example, suppose Σ = {a, b, c , d , e, f } and consider the encoding
where a = 000, b = 001, c = 010, d = 011, e = 100, and f = 101. The
word “bed” can be encoded as 001100011.

Yufei Tao Greedy 3: Huffman Codes

3/23

We can reduce the length of encoding if letters’ usage frequencies
are known.

Suppose that, in a document, 10% of the letters are a, namely, the letter
has frequency 10%. Similarly, suppose that letters b, c , d , e, and f have
frequencies 20%, 13%, 9%, 40%, and 8%, respectively.

If we use the encoding a = 100, b = 111, c = 101, d = 1101, e = 0,
f = 1100, the average number of bits per letter is:

3 · 0.1 + 3 · 0.2 + 3 · 0.13 + 4 · 0.09 + 1 · 0.4 + 4 · 0.08 = 2.37.

This is better than using 3 bits per letter.

Yufei Tao Greedy 3: Huffman Codes

4/23

What is wrong with the encoding e = 0, b = 1, c = 00, a = 01,
d = 10, f = 11? Ambiguity in decoding! For example, does the string
10 mean “be” or “d”?

To allow decoding, we enforce the following constraint:

No letter’s codeword should be a prefix of another letter’s code-
word.

An encoding satisfying the constraint is said to be a prefix code.

Example: The encoding a = 100, b = 111, c = 101, d = 1101,
e = 0, f = 1100 is a prefix code. Just for fun, try decoding the
following binary string.

10011010100110011100

Yufei Tao Greedy 3: Huffman Codes

5/23

The Prefix Coding Problem

For each letter σ ∈ Σ, let freq(σ) denote the frequency of σ. Also,
denote by len(σ) the number of bits in the codeword of σ.

Given an encoding, its average length is∑
σ∈Σ

freq(σ) · len(σ).

The objective of the prefix coding problem is to find a prefix code for Σ
with the shortest average length.

Yufei Tao Greedy 3: Huffman Codes

6/23

A code tree on Σ as a binary tree T satisfying:

Every leaf node of T corresponds to a unique letter in Σ;
every letter in Σ corresponds to a unique leaf node in T .

For every internal node of T , its left edge (if exists) is
labeled 0, and its right edge (if exists) is labeled 1.

T generates a prefix code as follows:

For each letter σ ∈ Σ, generate its codeword by concatenating the
bit labels of the edges on the path from the root of T to σ.

Think: Why must the encoding be a prefix code?

Yufei Tao Greedy 3: Huffman Codes

7/23

Lemma: Every prefix code is generated by a code tree.

The proof will be left as a regular exercise.

Example: For our encoding a = 100, b = 111, c = 101, d = 1101,
e = 0, and f = 1100, the code tree is:

f d

a c b

e

0 1

0

0 0

0

1

1

1

1

Yufei Tao Greedy 3: Huffman Codes

8/23

Let T be the code tree generating a prefix code. Given a letter σ of Σ,
its code word length len(σ) is the level of its leaf node level(σ) in T
(i.e., the number edges from the root to node σ).

Example:

f d

a c b

e

0 1

0

0 0

0

1

1

1

1

The levels of e, a, c , f , d , and b are 1, 3, 3, 4, 4, and 3, respectively.

Hence:

avg length =
∑
σ∈Σ

freq(σ) · len(σ) =
∑
σ∈Σ

freq(σ) · level(σ) = avg height of T

Goal (restated): Find a code tree on Σ with the smallest average height.

Yufei Tao Greedy 3: Huffman Codes

9/23

Huffman’s Algorithm

Next, we will see a simple algorithm for solving the prefix coding problem.

Let n = |Σ|. In the beginning, create a set S of n stand-alone leaves,
each corresponding to a distinct letter in Σ. If leaf z is for letter σ, define
the frequency of z to be freq(σ).

Yufei Tao Greedy 3: Huffman Codes

10/23

Huffman’s Algorithm

Then, repeat until |S | = 1:

1 Remove from S two nodes u1 and u2 with the smallest frequencies.

2 Create a node v with u1 and u2 as the children. Set the frequency
of v to be the frequency sum of u1 and u2.

3 Add v to S .

When |S | = 1, we have obtained a code tree. The prefix code derived
from this tree is a Huffman code.

Yufei Tao Greedy 3: Huffman Codes

11/23

Example

Consider our earlier example where a, b, c , d , e, and f have frequencies
0.1, 0.2, 0.13, 0.09, 0.4, and 0.08, respectively.

Initially, S has 6 nodes:

fda cb e

4010 20 13 89

The number in each circle represents frequency (e.g., 10 means 10%).

Yufei Tao Greedy 3: Huffman Codes

12/23

Example

Merge the two nodes with the smallest frequencies 8 and 9. Now S has 5
nodes {a, b, c , e, u1}:

a cb e

4010 20 13 17

d

9

f

8

u1

Yufei Tao Greedy 3: Huffman Codes

13/23

Example

Merge the two nodes with the smallest frequencies 10 and 13. Now S
has 4 nodes {b, e, u1, u2}:

df

b e

4020

98

17

ca

1310

23u2 u1

Yufei Tao Greedy 3: Huffman Codes

14/23

Example

Merge the two nodes with the smallest frequencies 17 and 20. Now S
has 3 nodes {e, u2, u3}:

df

e

40

98

17

ca

1310

23

b

20

37u2 u3

Yufei Tao Greedy 3: Huffman Codes

15/23

Example

Merge the two nodes with the smallest frequencies 23 and 37. Now S
has 2 nodes {e, u4}:

df

e

40

98

17

ca

1310

23

b

20

37

60 u4

Yufei Tao Greedy 3: Huffman Codes

16/23

Example

Merge the two remaining nodes. Now S has a single node left.

df

e

40

98

17

ca

1310

23

b

20

37

60

100

This is the final code tree.

Yufei Tao Greedy 3: Huffman Codes

17/23

It is easy to implement the algorithm in O(n log n) time (exercise).

Next, we prove that the algorithm gives an optimal code tree, i.e.,
one that minimizes the average height.

Yufei Tao Greedy 3: Huffman Codes

18/23

Property 1

Lemma: In an optimal code tree, every internal node of T must
have two children.

The proof is left as a regular exercise.

Yufei Tao Greedy 3: Huffman Codes

19/23

Property 2

Lemma: Let σ1 and σ2 be two letters in Σ with the lowest fre-
quencies. There exists an optimal code tree where σ1 and σ2 have
the same parent.

Proof: W.l.o.g., assume freq(σ1) ≤ freq(σ2). Let T be any optimal code
tree. Let p be an arbitrary internal node with the largest level in T . By
Property 1, p must have two leaves. Let x and y be letters corresponding
to those leaves such that freq(x) ≤ freq(y). Swap σ1 with x and σ2 with
y , which gives a new code tree T ′. Note that both σ1 and σ2 are
children of p in T ′.

Convince yourself that the average length of T ′ is at most that of T .
Hence, T ′ is optimal as well.

Yufei Tao Greedy 3: Huffman Codes

20/23

Theorem: Huffman’s algorithm produces an optimal prefix code.

Proof: We will prove by induction on the size n of the alphabet Σ.

Base Case: n = 2. In this case, the algorithm encodes one letter with 0,
and the other with 1, which is clearly optimal.

General Case: Assuming the theorem’s correctness for n = k − 1 where
k ≥ 3, next we show that it also holds for n = k .

Yufei Tao Greedy 3: Huffman Codes

21/23

Proof (cont.): Let σ1 and σ2 be two letters in Σ with the lowest
frequencies.

By Property 2, there is an optimal code tree T on Σ where leaves σ1 and
σ2 are the children of the same parent p.

Let Thuff be the code tree returned by Huffman’s algorithm on Σ.
Convince yourself that σ1 and σ2 have the same parent q in Thuff .

Yufei Tao Greedy 3: Huffman Codes

22/23

Proof (cont.): Construct a new alphabet Σ′ from Σ by removing σ1 and
σ2, and adding a letter σ∗ with frequency freq(σ1) + freq(σ2).

Let T ′ be the tree obtained by removing leaves σ1 and σ2 from T (thus
making p a leaf). T ′ is a code tree on Σ′ where p corresponds to σ∗.
Observe:

avg height of T = avg height of T ′ + freq(σ1) + freq(σ2).

Let T ′
huff be the tree obtained by removing leaves σ1 and σ2 from Thuff

(thus making q a leaf). T ′
huff is a code tree on Σ′ where q corresponds

to σ∗.

avg height of Thuff = avg height of T ′
huff + freq(σ1) + freq(σ2).

Yufei Tao Greedy 3: Huffman Codes

23/23

Proof (cont.): T ′
huff is the output of Huffman’s algorithm on Σ′.

By our inductive assumption, T ′
huff is optimal on Σ′. Thus:

avg height of T ′
huff ≤ avg height of T ′

Hence:

avg height of Thuff ≤ avg height of T .

Yufei Tao Greedy 3: Huffman Codes

