# ENGG1410-F Tutorial 9

### Hao Xu

#### Department of Computer Science and Engineering The Chinese University of Hong Kong

ロト 《 伊 ト 4 喜 ト 4 喜 ト 喜 の 9 (ひ 1/15 ENGG1410-F Tutorial 9



Consider the sphere  $(x - 1)^2 + (y - 2)^2 + z^2 = 6$ .

- **(**) Give a normal vector of the sphere at point  $(2, 2 + \sqrt{2}, \sqrt{3})$ .
- 2 Give the equation of the tangent plane at point  $(2, 2 + \sqrt{2}, \sqrt{3})$ .



2/15ENGG1410-F Tutorial 9

Problem 1 - Solution.

See Problem 1 of "Excercise: Surfaces".



#### Problem 2.

Consider again the sphere  $(x-1)^2 + (y-2)^2 + z^2 = 6$ .

- Let C₁ be the curve on the sphere satisfying x = 2. Give a tangent vector v₁ of C₁ at point (2, 2 + √2, √3).
- 2 Let C<sub>2</sub> be the curve on the sphere satisfying y = 2 + √2. Give a tangent vector v<sub>2</sub> of C<sub>2</sub> at point (2, 2 + √2, √3).





4/15

Problem 2 - Solution.

See Problem 2 of "Excercise: Surfaces".



## Problem 3.

Let C be the arc on the curve  $\mathbf{r}(t) = [(\cos t)^3, (\sin t)^3]$  defined by increasing t from 0 to  $\pi/2$ . Calculate  $\int_C ds$ , namely, the length of C.

#### Problem 3 - Solution.

First, represent C as the vector function  $\mathbf{r}(t) = [(\cos t)^3, (\sin t)^3]$  with t ranging from 0 to  $\pi/2$ . Then:

$$\int_C ds = \int_0^{\pi/2} ds = \int_0^{\pi/2} \frac{ds}{dt} dt$$
  
=  $\int_0^{\pi/2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$   
=  $\int_0^{\pi/2} \sqrt{\left(3(\cos t)^2(-\sin t)\right)^2 + \left(3(\sin t)^2(\cos t)\right)^2} dt$   
=  $3\int_0^{\pi/2} \cos t \sin t \, dt = \frac{3}{2}\sin^2 t \Big|_0^{\pi/2} = \frac{3}{2}$ 

ENGG1410-F Tutorial 9

7/15

イロト イヨト イヨト



Let C be the line segment from point p(1,2,3) to point q(8,7,6). Calculate  $\int_C (x+z^2) ds.$ 



Problem 4 - Solution.

See Problem 2 of "Excercise: Line Integrals by Arc Length".





Let C be the circle  $x^2 + y^2 = 1$ . Calculate  $\int_C y ds$ .



Problem 5 - Solution.

See Problem 3 of "Excercise: Line Integrals by Arc Length".





Let C be the boundary of the square shown below: Calculate  $\int_C y ds.$ 



ENGG1410-F Tutorial 9

12/15

< 同 ト < 三 ト

Problem 6 - Solution.

 $\int_C y ds = 0$  can be directly inferred from the definition of "line integral by arc length" :

Break each edge into subintervals, and argue that each subinterval will be "canceled" by another subinterval mirrored about x-axis.



See also Problem 4 of "Excercise: Line Integrals by Arc Length".

13/15



Let C be the intersection of two surfaces: sphere  $x^2+y^2+z^2=3$  and plane x=y. Calculate  $\int_C x^2 ds.$ 



ENGG1410-F Tutorial 9

14/15

Problem 7 - Solution.

See Problem 5 of "Excercise: Line Integrals by Arc Length".

