ENGG1410-F Tutorial 6

Jianwen Zhao

Department of Computer Science and Engineering The Chinese University of Hong Kong

> , ENGG1410-F Tutorial 6

1/16

• □ ▶ • □ ▶ • □ ▶ • •

Problem 1. Matrix Diagonalization

Diagonalize the following matrix:

$$oldsymbol{A} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

ENGG1410-F Tutorial 6

2/16

< ロ > < 同 > < 回 > < 回

The 2×2 matrix A has two distinct eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 5$, which means it is diagonalizable.

We then obtain an arbitrary eigenvector v_1 of λ_1 and also an arbitrary eigenvector v_2 of λ_2 , say

$$\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \ \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Next, apply the diagonalization method we discussed in class, form:

$$\boldsymbol{Q} = \begin{bmatrix} 1 & 1\\ -1 & 2 \end{bmatrix}$$

by using v_1 and v_2 as the first and second column respectively.

3/16

・ロト ・母ト ・ヨト ・ヨト

 ${\boldsymbol{Q}}$ has the inverse

$$\boldsymbol{Q}^{-1} = \begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$\boldsymbol{A} = \boldsymbol{Q} \; diag[-1,5] \; \boldsymbol{Q}^{-1}$$

ENGG1410-F Tutorial 6

4/16

Problem 2. Matrix Power

Consider again the matrix $oldsymbol{A}$ in Problem 1, i.e,.

$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

(日)

< E

ENGG1410-F Tutorial 6

5/16

Calculate A^t for any integer $t \ge 1$.

We already know that

$$\boldsymbol{A} = \boldsymbol{Q} \; diag[-1,5] \; \boldsymbol{Q}^{-1}$$

Hence,

$$\begin{split} \boldsymbol{A}^{t} &= \boldsymbol{Q} \; diag[(-1)^{t}, 5^{t}] \; \boldsymbol{Q}^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} (-1)^{t} & 0 \\ 0 & 5^{t} \end{bmatrix} \begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix} \\ &= \begin{bmatrix} (5^{t} + 2 \times (-1)^{t})/3 & (5^{t} + (-1)^{t+1})/3 \\ (2 \times 5^{t} + 2 \times (-1)^{t+1})/3 & (2 \times 5^{t} + (-1)^{t+2})/3 \end{bmatrix} \end{split}$$

ENGG1410-F Tutorial 6

æ

6/16

・ロト ・回ト ・ヨト ・ヨト

Problem 3. Matrix Diagonalization

Diagonalize the following matrix:

$$\boldsymbol{A} = \begin{bmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$$

ENGG1410-F Tutorial 6

7/16

< ロ > < 同 > < 回 > < 回 > < 回

Solution

A has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$. $EigenSpace(\lambda_1)$ includes all $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ satisfying $x_1 = u + v, x_2 = u, x_3 = v$ for any $u, v \in \mathbb{R}$.

The vector space $EigenSpace(\lambda_1)$ has dimension 2 with a basis $\{v_1, v_2\}$ where $v_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ (given by u = 1, v = 0) and $v_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ (given by u = 0, v = 1).

Similarly, $EigenSpace(\lambda_2)$ includes all $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ satisfying $x_1 = x_2 = -3u$ and $x_3 = u$ for any $u \in \mathbb{R}$.

The vector space $EigenSpace(\lambda_2)$ has dimension 1 with a basis $\{v_3\}$ where $v_3 = \begin{bmatrix} -3 & -3 & 1 \end{bmatrix}^T$ (given by u = 1).

8/16

Solution-cont.

So far, we have obtained three linearly independent eigenvectors v_1, v_2, v_3 of A. We then construct

$$\boldsymbol{Q} = \begin{bmatrix} 1 & 1 & -3 \\ 1 & 0 & -3 \\ 0 & 1 & 1 \end{bmatrix}$$

and $oldsymbol{Q}$ has the inverse

$$\boldsymbol{Q}^{-1} = \begin{bmatrix} -3 & 4 & 3\\ 1 & -1 & 0\\ -1 & 1 & 1 \end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$\boldsymbol{A} = \boldsymbol{Q} \; diag[1, 1, 2] \; \boldsymbol{Q}^{-1}$$

9/16

< ロ > < 同 > < 回 > < 回 >

Problem 4. Matrix Similarity

Suppose that matrices A and B are similar to each other, namely, there exists P such that $A = P^{-1}BP$.

Prove: if x is an eigenvector of A under eigenvalue λ , then Px is an eigenvector of B under eigenvalue λ .

ENGG1410-F Tutorial 6

10/16

マロト イラト イラト

Definition. The trace of an $n \times n$ square matrix A, denoted by tr(A), is defined to be the sum of the elements on the main diagonal of A, i.e., $tr(A) = \sum_{i=1}^{n} a_{ii}$.

For example, if

$$\boldsymbol{A} = \begin{bmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$$

then $tr(\mathbf{A}) = 4 + (-2) + 2 = 4$.

Prove: tr(AB) = tr(BA), where A is an $m \times n$ matrix and B is an $n \times m$ matrix.

イロト イポト イラト イラト

ENGG1410-F Tutorial 6

11/16

Solution

Proof. Denote by a_{ij} the element of A at *i*-th row and *j*-th column, b_{ji} the element of B at *j*-th row and *i*-th column, where $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$. Then

$$(AB)_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \dots + a_{in}b_{ni} = \sum_{j=1}^{n} a_{ij}b_{ji}$$

Similarly,

$$(BA)_{jj} = b_{j1}a_{1j} + b_{j2}a_{2j} + \dots + b_{jm}a_{mj} = \sum_{i=1}^{m} b_{ji}a_{ij}$$

Hence

$$tr(\mathbf{AB}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} b_{ji} a_{ij} = tr(\mathbf{BA})$$

ENGG1410-F Tutorial 6

12/16

m

Problem 6. Traces & Eigenvalues & Determinants

Suppose A is an $n \times n$ diagonalizable matrix, namely, there exists Q such that $A = QBQ^{-1}$, and B is a diagonal matrix. Denote by $\lambda_1, \lambda_2, \dots, \lambda_n$ the n eigenvalues of A.

Prove: (1) $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$, (2) $det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$.

ENGG1410-F Tutorial 6

13/16

(4月) (1日) (日)

Proof.

(1)

$$tr(\boldsymbol{A}) = tr(\boldsymbol{Q}\boldsymbol{B}\boldsymbol{Q}^{-1})$$
$$= tr(\boldsymbol{B}\boldsymbol{Q}^{-1}\boldsymbol{Q})$$
$$= tr(\boldsymbol{B})$$
$$= \sum_{i=1}^{n} \lambda_{i}$$

Where the second equality used the fact that tr(AB) = tr(BA) and the last equality used the facts (i) A and B have exactly the same eigenvalues due to their similarity, and (ii) the eigenvalues of a diagonal matrix are simply its diagonal elements.

14/16

伺い イヨト イヨト

Solution-cont.

(2)

$$det(\mathbf{A}) = det(\mathbf{Q}\mathbf{B}\mathbf{Q}^{-1})$$

= $det(\mathbf{Q}) \cdot det(\mathbf{B}) \cdot det(\mathbf{Q}^{-1})$
= $det(\mathbf{B}) \cdot det(\mathbf{Q}) \cdot det(\mathbf{Q}^{-1})$
= $det(\mathbf{B}) \cdot det(\mathbf{Q}\mathbf{Q}^{-1})$
= $det(\mathbf{B})$
= $\Pi_{i=1}^{n}\lambda_{i}$

Where the last equality used the facts (i) A and B have exactly the same eigenvalues due to their similarity, and (ii) the eigenvalues of a diagonal matrix are simply its diagonal elements.

15/16

・ 同 ト ・ ヨ ト ・ ヨ ト

In fact, the conclusion of this problem is true in general, regardless of whether A is diagonalizable.

For any $n \times n$ square matrix A, if its n eigenvalues are $\lambda_1, \lambda_2, \cdots, \lambda_n$, then $tr(A) = \sum_{i=1}^n \lambda_i$ and $det(A) = \prod_{i=1}^n \lambda_i$.

The proof is not difficult but a little tedious, students who are interested may refer to the proof at the following link:

16/16

ENGG1410-F Tutorial 6

https://www.adelaide.edu.au/mathslearning/play/seminars/ evalue-magic-tricks-handout.pdf