ENGG1410-F Tutorial 3

Shangqi Lu

Department of Computer Science and Engineering The Chinese University of Hong Kong

ENGG1410-F Tutorial 3

Suppose the following linear system Ax = b has at least one non-zero solution (in which at least one of x_1 , x_2 and x_3 is non-zero). Calculate the possible values of λ .

$$\begin{cases} (1+\lambda)x_1 + x_2 + x_3 = 0\\ x_1 + (1+\lambda)x_2 + x_3 = 0\\ x_1 + x_2 + (1+\lambda)x_3 = 0 \end{cases}$$

Note: regardless of λ , $x_1 = x_2 = x_3 = 0$ is always a solution.

Solution

As mentioned, $x_1 = x_2 = x_3 = 0$ is always a solution. If the system has at least one non-zero solution, it means that the system has more than one solution.

According to the consistency criterion theorem, det(A) = 0.

$$\begin{vmatrix} 1+\lambda & 1 & 1 \\ 1 & 1+\lambda & 1 \\ 1 & 1 & 1+\lambda \end{vmatrix} = 0$$

Solving the equation, we know that $\lambda = 0$ or $\lambda = -3$.

Calculate the determinant of the following matrix.

ΓΟ	0		0	1	0]	
0	0	• • •	2	0	0	
÷	÷		÷	÷	:	
2018	0		0	0	0	
0	0	•••	0	0	2019	

3

P.

э

Solution

Let A be an $n \times n$ matrix. Denote by r_i (i = 1, 2, ..., n) the *i*-th row vectors of A.

Recall that the determinant of A:

- should be multiplied by 1 after switching two rows of A.
- should be multiplied by *c* after multiplying all numbers of a row of *A* by the same non-zero value *c*.
- has no change after updating row r_i to $r_i + r_j$.

Transform the given matrix into the following diagonal matrix by only using the operation of switching two columns :

[1	0		0	0	0]
0	2	• • •	0	0	0
:	÷		÷	÷	÷
0	0		0	2018	0
0	0	• • •	0	0	2019

You can verify that there is an odd number of such operations (think: why). The answer is -2019! (factorial of 2019).