Lecture Notes: Curves and Tangent Vectors

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Curves

Imagine that you move a point around in \mathbb{R}^d . The locus of the point forms a *curve*. Intuitively, a curve is a one-dimensional "in nature": we can represent a curve using a vector function $\mathbf{r}(t)$:

$$\mathbf{r}(t) = [x_1(t), x_2(t), \dots, x_d(t)]$$

where t is a real value in a certain range, and each function $x_i(t)$ (with $i \in [1,d]$) returns a real value. For each t, $(x_1(t), ..., x_d(t))$ defines a point, and r(t) gives the corresponding vector.

For example, $\mathbf{r}(t) = [\cos t, \sin t]$ for $t \in [0, 2\pi)$ defines a circle in \mathbb{R}^2 , whereas $\mathbf{r}(t) = [\cos t, \sin t, t]$ for $t \in [0, 2\pi)$ defines a circular helix in \mathbb{R}^3 as shown below:

As yet another example, given constant *d*-dimensional vectors \boldsymbol{p} and \boldsymbol{q} with $\boldsymbol{q} \neq \boldsymbol{0}$, function $\boldsymbol{r}(t) = \boldsymbol{p} + t\boldsymbol{q}$ for $t \in (-\infty, \infty)$ gives a line in \mathbb{R}^d .

2 Tangent Vectors

We are ready to introduce:

Definition 1. Let $\mathbf{r}(t)$ be a curve, t_0 be a value of t, and p be the point corresponding to $\mathbf{r}(t_0)$. If $\mathbf{r}(t)$ is differentiable at t_0 , then the vector $\mathbf{r}'(t_0)$ is the tangent vector of the curve at p.

The tangent vector has an intuitive geometric interpretation. Let q be the point that corresponds to $\mathbf{f}(t_0 + \Delta t)$; see the figure below. Let us focus on the direction of the directed segment \overrightarrow{pq} . Now, imagine q moving along the curve towards p (namely, Δt tends to 0). The direction of the directed segment gradually converges to the direction of the tangent vector at p.

We will refer to

$$oldsymbol{u}(t_0) = rac{oldsymbol{r}'(t)}{|oldsymbol{r}'(t)|}$$

as the unit tangent vector of the curve at p. Note that $|u(t_0)| = 1$.

As an example, consider the helix mentioned earlier: $\mathbf{r}(t) = [\cos t, \sin t, t]$ for $t \in [0, 2\pi)$. Let p be the point corresponding to $\mathbf{r}(1)$. Then, the tangent vector of the curve at p is $\mathbf{r}'(1) = [-\sin(1), \cos(1), 1]$. The unit tangent vector at p is therefore $[-\frac{\sin(1)}{\sqrt{2}}, \frac{\cos(1)}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$.