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1 Surfaces

We will focus on R? with dimensions z, 3, and z. Consider a plane x + 2y + 3z —4 = 0, or a sphere
22 + 9% 4+ 22 = 1. In mathematics, we call them “surfaces”.

Formally, a surface can be defined by equating scalar function f(z,y, z) to 0, namely, f(x,y, z) =
0. In the plane example, f(x,y,z) = = + 2y + 3z — 4, whereas in the sphere example, f(z,y,z) =
22 4+ 9% + 22 — 1. It would be helpful to understand why f(z,y, z) = 0 is a surface in the following
way. Take a point (z,y) in the xy plane, and solve the value of z from f(z,y,2) = 0. If z exists,
think of z as the “elevation” of a mountain at the longitude x and altitude y. If you move (z,y)
around, using z you will be tracing out the top of an undulating mountain. Note that sometimes
multiple z may satisfy f(z,y,z) =0, as is true for the sphere 22 + 32 + 2% = 1.

2 Tangent Planes and Surface Normals

Consider a surface f(z,y,z) = 0. Fix a point p(xg,yo,20) on the surface such that
%(mo,yo,zo), %(mo,yo,zo), %(xo,yo,zo) exist, and are not all equal to 0 — note that
of of

[%(m,y, z), 5y (@, 9, 2), g (#,y, 2)] is exactly the gradient of the scale function f(,y, 2).

Take an arbitrary curve C on the surface passing p. We know that C' can be described by
functions x(t),y(t), and z(t), which take a real-valued parameter ¢, and give the x-, y-, and z-
coordinates of a point on C. Let ¢y be the value of ¢ corresponding to p (hence, xo = x(t), yo = y(t),
and zp = 2(t)). We assume that 2'(to), y/(to), 2’ (to) exist, and are not all equal to 0.

As C is on the surface, we know that

flx(t),y(t),2(t)) = 0.
Taking the derivative of both sides with respect to t gives:

a(fl(),y(0),2(1)))
dt
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(applied the chain rule here) =

o 2 g 2) o) - [P0 @,2 0] = 0 =
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Applying the above equation to point p results in
V f(z0, Y0 20) - {xl(to), y'(to), Z’(to)} =0
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The above equation tells us something interesting. Notice that [2/(to),y/(t0), 2'(to)] is a tangent
vector of C' at p. By our assumptions, neither V f (o, yo, 20) nor [/ (to), v’ (t0), z'(to)] is 0. Therefore,
the direction of V f(xo, yo, z0) is perpendicular to that of [2(to),y (to), 2’ (t0)]-

Here is something even more interesting. Recall that we chose C' as an arbitrary curve passing
p whose tangent vector at p is not 0. There can be an infinite number of such curves (the figure
below shows two examples). All their tangent lines must be perpendicular to the direction of
V f(xo,y0, 20)! It thus follows that all those tangent lines must form a plane, and that the direction
of V f(z0, y0, 20) is perpendicular to this plane!

tangent line of curve Cy at p
normal vector of

the surface at p

tangent line of
curve Cy at p

The plane aforementioned is therefore called the tangent plane of the surface at p. V f(xo, yo, z0)
is called a normal vector of the surface at p.

Example. Consider the sphere 2 + y? + 22 = 1 and a point p(%, %, %) on the sphere. What
is the tangent plane 7 of the sphere at p?
Define f(x,y,2) = 2 + y* + 22 — 1. Hence, the sphere is given by f(z,y,z) = 0. The gradient

of f is:

T X

ox’ Oy’ Oz
= [2z,2y,2z2].

From the earlier discussion we know that m must be perpendicular to the gradient vector at p,
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namely: Vf(f et \[) [\[ et \f] To write out the equation for 7, let q = (z,y, 2) be any
point on w. We know that the vector ﬁ must be perpendicular to V f (ﬁ’ ek %) (which is a
normal vector of 7 at p). This means:

-V

et
5

Il

-

4

2 2 2 \Qf 2
vl | w] -t
e
s + = 2.

v

5\@
Sl



