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Let p(x1, x2, ..., xd) be a point in Rd. We will often view it as a d-dimensional vector [x1, x2, ..., xd].
As a convention, if it has been clear from the context that p is a point, then p represents this
corresponding vector.

Let f(x1, x2, ..., xd) be a scalar function of real-valued parameters x1, ..., xd. In other words,
for each point p(x1, ..., xd) of Rd, f(x1, x2, ..., xd) returns a real value, if it is defined at p. For
simplicity, sometimes we may write f(x1, x2, ..., xd) simply as f(p). Next, we introduce a concept
called gradient for such functions:

Definition 1. Let f(x1, ..., xd) be a function defined as above. Consider a point (t1, t2, ..., td) at
which the partial derivative ∂f

∂xi
(t1, ..., td) exists for all i ∈ [1, d]. Then, the gradient of f(x1, ..., xd)

at (t1, t2, ..., td) is the vector:

∇f(t1, ..., td) =

[
∂f

∂x1
(t1, ..., td),

∂f

∂x2
(t1, ..., td), ...,

∂f

∂xd
(t1, ..., td)

]
.

For example, suppose that f(x, y, z) = x3 + 2xy + 3xz2. We know that ∂f
∂x = 3x2 + 2y + 3z2,

∂f
∂y = 2x, and ∂f

∂z = 6x. Therefore,

∇f(x, y, z) =
[
3x2 + 2y + 3z2, 2x, 6x

]
.

The gradient ∇f(t1, ..., td) has an important geometric interpretation. Imagine that we are
standing at the point p(t1, ..., td). Then the gradient points to the direction we should move in order
to increase the value of function f(x1, ..., xd) the fastest. Next, we will formalize the intuition.

Lemma 1. Suppose that we decide to move from p towards the direction of a unit vector u by a
distance ∆s. Let q be the point we will reach, as shown below:

p

q
(∆s)u

ℓ

We have:

lim
∆s→0

f(q)− f(p)

∆s
=

(
∇f(p)

)
· u. (1)

Proof. Suppose that u = [u1, u2, ..., ud], and the coordinates of p are (t1, t2, ..., td).

Let ` be the line that passes p and q. We know that we can represent any point on ` as
(x1(s), x2(s), ...., xd(s)), where for all i ∈ [1, d]:

xi(s) = ti + s · ui.
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In particular, if s = 0, the above representation gives p, whereas if s = ∆s, the above representation
gives q.

Define g(s) = f(x1(s), ..., xd(s)). We can re-write the left hand side of (1) as:

lim
∆s→0

f(q)− f(p)

∆s
= lim

∆s→0

g(∆s)− g(0)

∆s

(by def. of derivative) = g′(0).

On the other hand, applying the chain rule1, we know:

g′(s) =
d∑

i=1

∂f

∂xi
(x1(s), ..., xd(s))

dxi
ds

=

[
∂f

∂x1
(x1(s), ..., xd(s)), ...,

∂f

∂xd
(x1(s), ..., xd(s))

]
·
[
x′1(s), ..., x′d(s)

]
= (∇f(x1(s), ..., xd(s))) · [u1, ..., ud]

= (∇f(x1(s), ..., xd(s))) · u.

Therefore, g′(0) = (∇f(x1(0), ..., xd(0))) · u = (∇f(p)) · u.

As a corollary of the above lemma, we obtain

lim
∆s→0

f(q)− f(p)

∆s
=

∣∣∣∇f(p)
∣∣∣|u| cos γ.

where γ is the angle between the directions of ∇f(p) and u. Hence, the limit is maximized if γ = 0,
namely, u has the same direction as ∇f(p).

It is worth mentioning that the limit on the left hand side of (1) is called the directional
derivative in the direction of u, and is denoted as Duf . Note that this is a function of p. In other
words, Duf(p) gives the directional derivative in the direction of u at point p.

1For example, suppose that f(x, y) = xy with x = sin t and y = t. The chain rule states that df
dt

= ∂f
∂x

∂x
∂t

+ ∂f
∂y

∂y
∂t

.

To verify this, let us first compute df
dt

directly: since f = (sin t) · t, we have df
dt

= (cos t)t+ sin t. We can get the same

using the chain rule: df
dt

= ∂f
∂x

∂x
∂t

+ ∂f
∂y

∂y
∂t

= y · cos t + x = (cos t)t + sin t. In general, given a function f(x1, x2, ..., xd)

where each xi (i ∈ [1, d]) is a function of t, the chain rule states that df
dt

=
∑d

i=1
∂f
∂xi

∂xi
∂t
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