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1 Angle between Two Vectors

Definition 1. Given two non-zero vectors a = [a1, ...,aq] and b = [b1, ..., b4, we define their angle
as the smaller angle' between the lines g and Cy, where £g is the line passing the origin and the
point (a1, ...,aq), and similarly Oy is the line passing the origin and the point (by,...,bq).

The figure below shows an example in two-dimensional space. Points A and B have coor_d}nates
(a1,a2) and (b1, b2), respectively. Thus, a is the vector defined by the directed segment OA, and

b is the vector defined by the directed segment O? The angle between a and b is the angle
as indicated in the figure between the two directed segments. Note that the angle of two vectors
always falls between 0 and 180 degrees.

y B(by,b2)

A(al, ag)

We say that vectors a and b are orthogonal if their angle is 90°.

2 Dot Product Revisited

Recall that given two vectors a = [ay, ..., aq] and b = [by, ..., bg], their dot product a - b is the real
value Zle a;b;. This is sometimes also referred to as the inner product of a and b. Next, we will
prove an important but less trivial property of dot product:

Lemma 1. Ifa # 0 and b # 0, then a - b = |a||b| cos~y, where v € [0°,180°] is the angle between
non-zero vectors a and b. .

—
Proof. Let OA and @ be the directed segments that define a and b, respectively; see Figure 1.
We know that E defines the vector b — a. By the law of cosine, we have:

AB]? = |OAP + |OBJ? — 2|0A||0B|cosy =
oy — OAP + |0BP? - |ABJ? "
204||0B|

!This is to say that the angle we want here never exceeds 180 degrees.
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Figure 1: Proof of Lemma 1
On the other hand, we have:

—
IOA*> = laf*=a-a

OBF = [pl=b-b
ABP = b—al*=(b—a)(b—a)
(by distributivity of dot product) = (b—a)-b—(b—a)-a
(by distributivity of dot product) = b-b—a-b—b-a+a-a
= b-b—2a-b+a-a

we can derive from (1)

a-a+b-b—(b-b—2a-b+a-a) a-b
2|al|b] |al[b|

cosy =
thus completing the proof. d
Corollary 1. When a # 0 and b # 0, then a - b =0 if and only if a and b are orthogonal.

Dot Product and Projection Length. Let us now see an important use of dot product:
computing the projection length of a line segment. Figure 2 shows 3 points P(—5,7,2), A(3,20,8),
and B(1,10,5). Let C be the projection of point A onto 1@ We want to calculate the length of
]?(}, denoted as ]ﬁ]

_}Dot products provide an easy way to solve this problem. Let a be the vector defined by
PA, and b the vector defined by ﬁ Clearly, a = [8,13,6] and b = [6, 3, 3]. It thus follows that
a-b=1[8-6+13-3+6-3] = 105. On the other hand, from Lemma 1, we know that a-b = |a||b| cos~,
where 7 is the angle as shown in Figure 2b. As |b| = /54, we know that

la|vb54cosy =105 =
la| cosy = 105/v/54.

Observe from Figure 2b |a|cos~y is exactly \ﬁ |



Figure 2: Using dot product to calculate projection lengths

3 Cross Product

Unlike dot product which is defined on vectors of arbitrary dimensionality d, cross product is defined
only on 3d vectors:

Definition 2. Given two 3d vectors a = [a1, a2, a3] and b = [by, by, b3, we define a x b, which is
called the cross product of a and b, as the vector ¢ = [c1, ca, c3] where

c1 = a2b3 — a3b2
Cy = a3b1 — alb3
Cc3 = a1b2 — a2b1.

The following equation offers an easy way to remember the above equations:

i j k
axb = ay a2 agf.
bi by b3

It is easy to verify by definition the following properties of cross product:
¢ (Anti-Commutativity) a x b = —(b x a).
e (Distributivity) @ x (b+¢) = (a x b) 4+ (a x ¢), and (b+¢) xa= (b x a) + (¢ X a).

Note that in general cross product does not necessarily obey associativity. Here is a counter example:
IXixj=0x7=0,butix (ixj)=itxk=—j.

Geometry of Cross Products. Next we will gain a geometric understanding about cross prod-
ucts.

Lemma 2. Let vy € [0°,180°] be the angle between the directions of two non-zero vectors a and b,
and ¢ =a x b. Then, |c| = |a||b|sin~.

Proof. See appendix. O
As an immediate corollary, we know that ¢ = 0 in each of the following scenarios:

ea=0o0rb=0.
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Figure 3: Illustration of cross product

e The angle between a and b is 0° or 180°.

—
If ¢ # 0, its length |c| has a beautiful explanation. Let O be the origin; and let OA and OB
the directed segments that define a and b, respectively. Then, |c| is twice the area of the triangle

OAB; see Figure 3a (note that the length of directed segment Eﬁ equals |b|sin ).

Lemma 3. Letc=a xb. Then,a-c=0andb-c=0.

Proof. Let a = [a1, az,as], b = [b1,be,bs], and ¢ = [c1, ca, c3]. We will prove only a - ¢ = 0 because
an analogous argument shows b - ¢ = 0.

a-c = ajcy+ ascy + ascs
= al(agbg — agbg) + ag(agbl — alb3) + ag(a1b2 — agbl)
= 0.

The lemma leads to the following important corollary:

Corollary 2. Let c=a x b. If ¢ # 0, then theﬂr@cted%ment O? defining c is perpendicular
to the plane determined by the directed segments OA and OB that define a and b, respectively (see

Figure 3b, where the plane is p).

Proof. Since ¢ # 0, we know that (i) neither a nor b is 0, and (ii) the angle v between the directions
of @ and b is larger than 0° but smaller than 180°. Hence, O—1>4 and OB uniquely determine a plane
p. Since a-c =0 and b-c =0, we know that (ﬁ is orthogonal to both (7)4 and O? Hence, O?
is perpendicular to p. ]

We are almost ready to explain ¢ = a x b in a way much more intuitive than Definition 2.
Recall that to unambiguously pinpoint a vector, we need to specify (i) its length, and (ii) its
direction. Lemma 2 has given the length, and Corollary 2 has almost given its direction. Why
did we say “almost”? Because there are two directed segments emanating from the origin that are
perpendicular to the plane p in Figure 3b: besides the ¢ shown, —c is also perpendicular to p.

We can remove this last piece of ambiguity as follows. Let us see the plane p from the side
such that ¢ shoots into our eyes. The direction of a should turn counter-clockwise to the direction



of b by an angle less than 180° (i.e., 7 in Figure 3b). Notice that if we see the plane p from the
wrong side, then a needs to do so clockwise to reach b. At this point, we have obtained a complete
geometric description about ¢ = a x b.

Appendix

Proof of Lemma 2

Let a = [a1, a2, a3], b = [b1, b2, b3], and ¢ = [c1, c2, c3] (remember ¢ = a x b). We will first establish
another lemma which is interesting in its own right:

Lemma 4. (|a||b|)? = |c|?> + (a - b)2.

Proof. We will take a bruteforce approach to prove the lemma, by representing all the quantities
in the target equation with coordinates.

(lal[b)? = (af + a3 + a3)(b] + b3 + b3)
= aib? + alb3 + albi 4 adb? + a3bd + a3b3 + adb? + a3bi 4 adbd
laxb? = E+c&+c

(azbs — agbs)® + (azby — arb3)? + (a1ba — azby)?
a2b3 + a3b2 + (Igbl + a1b3 + ale + ale — 2(1262(13()3 — 2(1/1[)1(13()3 — 2a1b1a2b2

(a . b)2 = (a1b1 + agby + a3b3)
= b1 + a2b2 + a3b + 2a1b1asbs + 2a1b1a3bs + 2a0baa3b3
The lemma. thus follows. ]

Now we proceed to prove Lemma 2. From Lemma 1, we know that a - b = |a||b|cosy. Hence:

(lallb])® — (a-b)* = (lal[b)* — (|alb])* cos” ¥

— (lal[b])2(1 - cos®7)
— (lal[b])?sin’y.

By combining the above with Lemma 4, we obtain:
2
el = (lal[b])sin?

Since siny > 0 (recall that v € [0°,180°)), it follows that |c| = |a||b]|sin~y.



