Lecture Notes: Dot Product and Cross Product

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Angle between Two Vectors

Definition 1. Given two non-zero vectors $\mathbf{a} = [a_1, ..., a_d]$ and $\mathbf{b} = [b_1, ..., b_d]$, we define their **angle** as the smaller angle¹ between the lines $\ell_{\mathbf{a}}$ and $\ell_{\mathbf{b}}$, where $\ell_{\mathbf{a}}$ is the line passing the origin and the point $(a_1, ..., a_d)$, and similarly $\ell_{\mathbf{b}}$ is the line passing the origin and the point $(b_1, ..., b_d)$.

The figure below shows an example in two-dimensional space. Points A and B have coordinates (a_1, a_2) and (b_1, b_2) , respectively. Thus, \boldsymbol{a} is the vector defined by the directed segment \overrightarrow{OA} , and \boldsymbol{b} is the vector defined by the directed segment \overrightarrow{OB} . The angle between \boldsymbol{a} and \boldsymbol{b} is the angle γ as indicated in the figure between the two directed segments. Note that the angle of two vectors always falls between 0 and 180 degrees.

We say that vectors \boldsymbol{a} and \boldsymbol{b} are *orthogonal* if their angle is 90°.

2 Dot Product Revisited

Recall that given two vectors $\boldsymbol{a} = [a_1, ..., a_d]$ and $\boldsymbol{b} = [b_1, ..., b_d]$, their **dot product** $\boldsymbol{a} \cdot \boldsymbol{b}$ is the real value $\sum_{i=1}^{d} a_i b_i$. This is sometimes also referred to as the *inner product* of \boldsymbol{a} and \boldsymbol{b} . Next, we will prove an important but less trivial property of dot product:

Lemma 1. If $a \neq 0$ and $b \neq 0$, then $a \cdot b = |a||b| \cos \gamma$, where $\gamma \in [0^{\circ}, 180^{\circ}]$ is the angle between non-zero vectors a and b.

Proof. Let \overrightarrow{OA} and \overrightarrow{OB} be the directed segments that define a and b, respectively; see Figure 1. We know that \overrightarrow{AB} defines the vector b - a. By the law of cosine, we have:

$$|\overrightarrow{AB}|^{2} = |\overrightarrow{OA}|^{2} + |\overrightarrow{OB}|^{2} - 2|\overrightarrow{OA}||\overrightarrow{OB}|\cos\gamma \Rightarrow$$

$$\cos\gamma = \frac{|\overrightarrow{OA}|^{2} + |\overrightarrow{OB}|^{2} - |\overrightarrow{AB}|^{2}}{2|\overrightarrow{OA}||\overrightarrow{OB}|}$$
(1)

¹This is to say that the angle we want here never exceeds 180 degrees.

Figure 1: Proof of Lemma 1

On the other hand, we have:

$$|\overrightarrow{OA}|^2 = |\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a}$$
$$|\overrightarrow{OB}|^2 = |\mathbf{b}|^2 = \mathbf{b} \cdot \mathbf{b}$$
$$|\overrightarrow{AB}|^2 = |\mathbf{b} - \mathbf{a}|^2 = (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})$$
(by distributivity of dot product) = $(\mathbf{b} - \mathbf{a}) \cdot \mathbf{b} - (\mathbf{b} - \mathbf{a}) \cdot \mathbf{a}$ (by distributivity of dot product) = $\mathbf{b} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{a}$
$$= \mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$$

we can derive from (1)

$$\cos \gamma = \frac{\boldsymbol{a} \cdot \boldsymbol{a} + \boldsymbol{b} \cdot \boldsymbol{b} - (\boldsymbol{b} \cdot \boldsymbol{b} - 2\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{a})}{2|\boldsymbol{a}||\boldsymbol{b}|} = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$$

thus completing the proof.

Corollary 1. When $a \neq 0$ and $b \neq 0$, then $a \cdot b = 0$ if and only if a and b are orthogonal.

Dot Product and Projection Length. Let us now see an important use of dot product: computing the projection length of a line segment. Figure 2 shows 3 points P(-5,7,2), A(3,20,8), and B(1,10,5). Let C be the projection of point A onto \overrightarrow{PB} . We want to calculate the length of \overrightarrow{PC} , denoted as $|\overrightarrow{PC}|$.

Dot products provide an easy way to solve this problem. Let \boldsymbol{a} be the vector defined by \overrightarrow{PA} , and \overrightarrow{b} the vector defined by \overrightarrow{PB} . Clearly, $\boldsymbol{a} = [8, 13, 6]$ and $\boldsymbol{b} = [6, 3, 3]$. It thus follows that $\boldsymbol{a} \cdot \boldsymbol{b} = [8 \cdot 6 + 13 \cdot 3 + 6 \cdot 3] = 105$. On the other hand, from Lemma 1, we know that $\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}||\boldsymbol{b}| \cos \gamma$, where γ is the angle as shown in Figure 2b. As $|\boldsymbol{b}| = \sqrt{54}$, we know that

$$|\boldsymbol{a}|\sqrt{54\cos\gamma} = 105 \Rightarrow$$

 $|\boldsymbol{a}|\cos\gamma = 105/\sqrt{54}.$

Observe from Figure 2b $|\boldsymbol{a}| \cos \gamma$ is exactly $|\overrightarrow{PC}|$.

Figure 2: Using dot product to calculate projection lengths

3 Cross Product

Unlike dot product which is defined on vectors of arbitrary dimensionality d, cross product is defined only on 3d vectors:

Definition 2. Given two 3d vectors $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$, we define $\mathbf{a} \times \mathbf{b}$, which is called the **cross product** of \mathbf{a} and \mathbf{b} , as the vector $\mathbf{c} = [c_1, c_2, c_3]$ where

$$c_1 = a_2b_3 - a_3b_2$$

$$c_2 = a_3b_1 - a_1b_3$$

$$c_3 = a_1b_2 - a_2b_1.$$

The following equation offers an easy way to remember the above equations:

It is easy to verify by definition the following properties of cross product:

- (Anti-Commutativity) $\boldsymbol{a} \times \boldsymbol{b} = -(\boldsymbol{b} \times \boldsymbol{a}).$
- (Distributivity) $\boldsymbol{a} \times (\boldsymbol{b} + \boldsymbol{c}) = (\boldsymbol{a} \times \boldsymbol{b}) + (\boldsymbol{a} \times \boldsymbol{c})$, and $(\boldsymbol{b} + \boldsymbol{c}) \times \boldsymbol{a} = (\boldsymbol{b} \times \boldsymbol{a}) + (\boldsymbol{c} \times \boldsymbol{a})$.

Note that in general cross product does <u>not</u> necessarily obey associativity. Here is a counter example: $i \times i \times j = 0 \times j = 0$, but $i \times (i \times j) = i \times k = -j$.

Geometry of Cross Products. Next we will gain a geometric understanding about cross products.

Lemma 2. Let $\gamma \in [0^{\circ}, 180^{\circ}]$ be the angle between the directions of two non-zero vectors \boldsymbol{a} and \boldsymbol{b} , and $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$. Then, $|\boldsymbol{c}| = |\boldsymbol{a}||\boldsymbol{b}| \sin \gamma$.

Proof. See appendix.

As an immediate corollary, we know that c = 0 in each of the following scenarios:

• a = 0 or b = 0.

Figure 3: Illustration of cross product

• The angle between \boldsymbol{a} and \boldsymbol{b} is 0° or 180° .

If $\mathbf{c} \neq \mathbf{0}$, its length $|\mathbf{c}|$ has a beautiful explanation. Let O be the origin; and let \overrightarrow{OA} and \overrightarrow{OB} the directed segments that define \mathbf{a} and \mathbf{b} , respectively. Then, $|\mathbf{c}|$ is twice the area of the triangle OAB; see Figure 3a (note that the length of directed segment \overrightarrow{BD} equals $|\mathbf{b}| \sin \gamma$).

Lemma 3. Let $c = a \times b$. Then, $a \cdot c = 0$ and $b \cdot c = 0$.

Proof. Let $\boldsymbol{a} = [a_1, a_2, a_3]$, $\boldsymbol{b} = [b_1, b_2, b_3]$, and $\boldsymbol{c} = [c_1, c_2, c_3]$. We will prove only $\boldsymbol{a} \cdot \boldsymbol{c} = 0$ because an analogous argument shows $\boldsymbol{b} \cdot \boldsymbol{c} = 0$.

$$\begin{aligned} \boldsymbol{a} \cdot \boldsymbol{c} &= a_1 c_1 + a_2 c_2 + a_3 c_3 \\ &= a_1 (a_2 b_3 - a_3 b_2) + a_2 (a_3 b_1 - a_1 b_3) + a_3 (a_1 b_2 - a_2 b_1) \\ &= 0. \end{aligned}$$

The lemma leads to the following important corollary:

Corollary 2. Let $\mathbf{c} = \mathbf{a} \times \mathbf{b}$. If $\mathbf{c} \neq \mathbf{0}$, then the directed segment \overrightarrow{OC} defining \mathbf{c} is perpendicular to the plane determined by the directed segments \overrightarrow{OA} and \overrightarrow{OB} that define \mathbf{a} and \mathbf{b} , respectively (see Figure 3b, where the plane is ρ).

Proof. Since $c \neq 0$, we know that (i) neither a nor b is 0, and (ii) the angle γ between the directions of a and b is larger than 0° but smaller than 180°. Hence, \overrightarrow{OA} and \overrightarrow{OB} uniquely determine a plane ρ . Since $a \cdot c = 0$ and $b \cdot c = 0$, we know that \overrightarrow{OC} is orthogonal to both \overrightarrow{OA} and \overrightarrow{OB} . Hence, \overrightarrow{OC} is perpendicular to ρ .

We are almost ready to explain $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ in a way much more intuitive than Definition 2. Recall that to unambiguously pinpoint a vector, we need to specify (i) its length, and (ii) its direction. Lemma 2 has given the length, and Corollary 2 has *almost* given its direction. Why did we say "almost"? Because there are two directed segments emanating from the origin that are perpendicular to the plane ρ in Figure 3b: besides the \mathbf{c} shown, $-\mathbf{c}$ is also perpendicular to ρ .

We can remove this last piece of ambiguity as follows. Let us see the plane ρ from the side such that c shoots into our eyes. The direction of a should turn *counter-clockwise* to the direction

of **b** by an angle less than 180° (i.e., γ in Figure 3b). Notice that if we see the plane ρ from the wrong side, then **a** needs to do so *clockwise* to reach **b**. At this point, we have obtained a complete geometric description about $c = a \times b$.

Appendix

Proof of Lemma 2

Let $\boldsymbol{a} = [a_1, a_2, a_3]$, $\boldsymbol{b} = [b_1, b_2, b_3]$, and $\boldsymbol{c} = [c_1, c_2, c_3]$ (remember $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$). We will first establish another lemma which is interesting in its own right:

Lemma 4. $(|a||b|)^2 = |c|^2 + (a \cdot b)^2$.

Proof. We will take a bruteforce approach to prove the lemma, by representing all the quantities in the target equation with coordinates.

$$\begin{aligned} (|\mathbf{a}||\mathbf{b}|)^2 &= (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) \\ &= a_1^2 b_1^2 + a_1^2 b_2^2 + a_1^2 b_3^2 + a_2^2 b_1^2 + a_2^2 b_2^2 + a_2^2 b_3^2 + a_3^2 b_1^2 + a_3^2 b_2^2 + a_3^2 b_3^2 \\ |\mathbf{a} \times \mathbf{b}|^2 &= c_1^2 + c_2^2 + c_3^2 \\ &= (a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2 \\ &= a_2^2 b_3^2 + a_3^2 b_2^2 + a_3^2 b_1^2 + a_1^2 b_3^2 + a_1^2 b_2^2 + a_2^2 b_1^2 - 2a_2 b_2 a_3 b_3 - 2a_1 b_1 a_3 b_3 - 2a_1 b_1 a_2 b_2 \\ (\mathbf{a} \cdot \mathbf{b})^2 &= (a_1 b_1 + a_2 b_2 + a_3 b_3)^2 \\ &= a_1^2 b_1^2 + a_2^2 b_2^2 + a_3^2 b_3^2 + 2a_1 b_1 a_2 b_2 + 2a_1 b_1 a_3 b_3 + 2a_2 b_2 a_3 b_3 \end{aligned}$$

The lemma thus follows.

Now we proceed to prove Lemma 2. From Lemma 1, we know that $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \gamma$. Hence:

$$(|\boldsymbol{a}||\boldsymbol{b}|)^2 - (\boldsymbol{a} \cdot \boldsymbol{b})^2 = (|\boldsymbol{a}||\boldsymbol{b}|)^2 - (|\boldsymbol{a}||\boldsymbol{b}|)^2 \cos^2 \gamma$$
$$= (|\boldsymbol{a}||\boldsymbol{b}|)^2 (1 - \cos^2 \gamma)$$
$$= (|\boldsymbol{a}||\boldsymbol{b}|)^2 \sin^2 \gamma.$$

By combining the above with Lemma 4, we obtain:

$$|\boldsymbol{c}|^2 = (|\boldsymbol{a}||\boldsymbol{b}|)^2 \sin^2 \gamma.$$

Since $\sin \gamma \ge 0$ (recall that $\gamma \in [0^\circ, 180^\circ]$), it follows that $|\mathbf{c}| = |\mathbf{a}||\mathbf{b}| \sin \gamma$.