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1 Scalar and Vector Functions

Recall that a function f takes an input, and yields an output. For example, in f(t) = t2 + 2t, the
input is t, whereas the output is the real value resulting from the calculation t2 + 2t. We say that
f is a scalar function if its output is a real value.

The output of a function can also be a vector. In this case, we refer to the function as a vector
function. For instance, consider f(t) = [t2, 2t, t3 − t]. Its input is t. For every fixed t, f(t) outputs
a 3d vector [t2, 2t, t3 − t]. We will adopt the convention of using boldfaces to represent vector
functions.

An input to a function may consist of multiple parameters. For example, f(x, y) = x2 +xy+y3

and f(x, y, z) = [xyz, y3z+ y2]. If a scalar function f takes d real values as its input, we say that f
is a scalar field in Rd. Similarly, if a vector function f takes d real values as its input, we say that
f is a vector field in Rd. For example, the f(x, y) and f(x, y, z) shown earlier are a scalar field in
R2 and a vector field in R3, respectively.

2 Limits and Continuity of One-Variable Vector Functions

Consider first a scalar function f(t) that takes a single real value t as its input. Recall that its limit
at t0 is defined as follows:

Definition 1. Suppose that a scalar function f(t) is defined around1 t0 (but not necessarily at t0).
We say that

lim
t→t0

f(t) = v

if for any real δ > 0, we can find a real value ε > 0 such that |f(t) − v| < δ for all t satisfying
0 < |t− t0| < ε.

Now consider a vector function f(t) that takes a single real value t as its input. Suppose that
the output of f(t) is a d-dimensional vector. By definition, we can write the output vector in its
component form [x1(t), x2(t), ..., xd(t)]. Now we extend Definition 1 to vector functions:

Definition 2. Suppose that f(t) = [x1(t), x2(t), ..., xd(t)] is defined around t0 (but not necessarily
at t0). We say that

lim
t→t0

f(t) = [v1, v2, ..., vd]

if it holds for each i ∈ [1, d] that limt→t0 xi(t) = vi.

1This means that there is a ρ > 0 such that f(t) is defined for t satisfying 0 < |t− t0| < ρ.
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For example, suppose that f(t) = [t2, sin(t)/t]. Since limt→0 t
2 = 0 and limt→0

sin(t)
t = 1, we

know that limt→0 f(t) = [0, 1].

Definition 3. Suppose that f(t) = [x1(t), x2(t), ..., xd(t)] is defined around t0 and at t0. We say
that f(t) is continuous at t0 if limt→t0 f(t) = f(t0).

For example, f(t) = [t2, sin(t)/t] is not continuous at 0 because the function is undefined at
t = 0. On the other hand, f(t) = [t2,

√
t+1] is continuous at t = 0. However, the following function

is not continuous at t = 0:

f(t) =

{
[t2,
√
t+ 1] if t 6= 0

[0, 2] if t = 0

This is because limt→0 f(t) = [0, 1] 6= f(0).

3 Derivatives of Vector Functions

Recall that derivatives of scalar functions are defined as follows:

Definition 4. Suppose that scalar function f(t) is defined around t0 and at t0. If the following
limit exists:

lim
∆t→0

f(t0 + ∆t)− f(t0)

∆t

then we say that

• f(t) is differentiable at t0.

• the above limit, denoted as f ′(t0), is the derivative of f(t) at t = t0.

We now extend the definition to vectors:

Definition 5. Suppose that vector function f(t) is defined around t0 and at t0. If the following
limit exists:

lim
∆t→0

f(t0 + ∆t)− f(t0)

∆t

then we say that

• f(t) is differentiable at t0.

• the above limit, denoted as f ′(t0), is the derivative of f(t) at t = t0.

The next important lemma provides another view of the above definition through components:

Lemma 1. Suppose that f(t) = [x1(t), x2(t), ..., xd(t)] is differentiable at t0 such that f ′(t0) =
[y1(t0), y2(t0), ..., yd(t0)]. Then, yi(t0) = x′i(t0) for each i ∈ [1, d].

Proof. By definition of vector subtraction:

f(t0 + ∆t)− f(t0) = [x1(t0 + ∆t)− x1(t0), x2(t0 + ∆t)− x2(t0), ..., xd(t0 + ∆t)− xd(t0)].
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Since

lim
∆t→0

f(t0 + ∆t)− f(t0)

∆t
= [y1(t0), y2(t0), ..., yd(t0)] (1)

we know

lim
∆t→0

f(t0 + ∆t)− f(t0)

∆t

= lim
∆t→0

[x1(t0 + ∆t)− x1(t0), x2(t0 + ∆t)− x2(t0), ..., xd(t0 + ∆t)− xd(t0)]

∆t

(scalar multiplication) = lim
∆t→0

[
x1(t0 + ∆t)− x1(t0)

∆t
,
x2(t0 + ∆t)− x2(t0)

∆t
, ...,

x1(t0 + ∆t)− x1(t0)

∆t

]
(from (1)) = [y1(t0), y2(t0), ..., yd(t0)].

It thus follows from Definition 2 that, for each i ∈ [1, d]:

lim
∆t→0

xi(t0 + ∆t)− xi(t0)

∆t
= yi(t0).

The left hand side of the above is precisely x′i(t0) by Definition 4. We thus complete the proof.

The above lemma provides a convenient and intuitive way to compute the derivative of a
vector function. For example, consider f(t) = [sin2 t, cos2 t]. Then we immediately know f ′(t) =
[2 sin(t) cos(t),−2 sin(t) cos(t)].

Vector derivatives obey some rules that are reminiscent of the corresponding rules on scalar
functions:

1. (f(t) + g(t))′ = f ′(t) + g′(t).

2. (f(t) · g(t))′ = f ′(t) · g(t) + f(t) · g′(t).

3. Suppose that the outputs of f(t) and g(t) are 3d vectors. Then, (f(t) × g(t))′ = f ′(t) ×
g(t) + f(t)× g′(t).

Next, we will prove Rules 1 and 2 in full. The proof for Rule 3 is very tedious but not difficult; we
will outline its main ideas.

Proof of Rule 1. Let f(t) = [x1(t), ..., xd(t)] and g(t) = [y1(t), ..., yd(t)]. From Lemma 1, we know
that f ′(t) = [x′1(t), ..., x′d(t)] and g′(t) = [y′1(t), ..., y′d(t)]. We have:

(f(t) + g(t))′ = [x1(t) + y1(t), ..., xd(t) + yd(t)]′

(by Lemma 1) =
[
(x1(t) + y1(t))′ , ..., (xd(t) + yd(t))′

]
=

[
x′1(t) + y′1(t), ..., x′d(t) + y′d(t)

]
= f ′(t) + g′(t).
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Proof of Rule 2. Let f(t) = [x1(t), ..., xd(t)] and g(t) = [y1(t), ..., yd(t)]. From Lemma 1, we know
that f ′(t) = [x′1(t), ..., x′d(t)] and g′(t) = [y′1(t), ..., y′d(t)]. We have:

(f(t) · g(t))′ =

(
d∑

i=1

xi(t) · yi(t)

)′

=
d∑

i=1

(
x′i(t) · yi(t) + xi(t) · y′i(t)

)
=

d∑
i=1

x′i(t) · yi(t) +
d∑

i=1

xi(t) · y′i(t)

= f ′(t) · g(t) + f(t) · g′(t).

Proof of Rule 3 (Sketch). Let f(t) = [x1(t), x2(t), x3(t)] and g(t) = [y1(t), y2(t), y3(t)]. The key to
the proof is to write out both sides of Rule 2 in their component forms. For the left hand side, we
know:

(f(t)× g(t))′

= [x2(t)y3(t)− x3(t)y2(t), x3(t)y1(t)− x1(t)y3(t), x1(t)y2(t)− x2(t)y1(t)]′

=
[
(x2(t)y3(t))′ − (x3(t)y2(t))′ , (x3(t)y1(t))′ − (x1(t)y3(t))′ , (x1(t)y2(t))′ − (x2(t)y1(t))′

]
.

You want to unfold the right hand side f ′(t) × g(t) + f(t) × g′(t) into similar forms. Then, you
will see that both sides are equivalent.
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