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1 Scalar and Vector Functions

Recall that a function f takes an input, and yields an output. For example, in f(t) = t% + 2t, the
input is t, whereas the output is the real value resulting from the calculation t? + 2t. We say that
f is a scalar function if its output is a real value.

The output of a function can also be a vector. In this case, we refer to the function as a vector
function. For instance, consider f(t) = [t2,2t,t3 —¢]. Its input is ¢. For every fixed ¢, f(t) outputs
a 3d vector [t?,2t,t3 —t]. We will adopt the convention of using boldfaces to represent vector
functions.

An input to a function may consist of multiple parameters. For example, f(x,y) = 22 + 2y + 1>
and f(z,y, z) = [vyz,y>z +y?]. If a scalar function f takes d real values as its input, we say that f
is a scalar field in R%. Similarly, if a vector function f takes d real values as its input, we say that
[ is a wector field in R?. For example, the f(z,y) and f(x,y, z) shown earlier are a scalar field in
R? and a vector field in R?, respectively.

2 Limits and Continuity of One-Variable Vector Functions

Consider first a scalar function f(¢) that takes a single real value ¢ as its input. Recall that its limit
at tg is defined as follows:

Definition 1. Suppose that a scalar function f(t) is defined around® to (but not necessarily at tg).
We say that

lim f(t) = v

t—to

if for any real 6 > 0, we can find a real value € > 0 such that |f(t) —v| < § for all t satisfying
0< ’t — to‘ < €.

Now consider a vector function f(¢) that takes a single real value ¢ as its input. Suppose that
the output of f(t) is a d-dimensional vector. By definition, we can write the output vector in its
component form [x1(t),za(t), ..., z4(t)]. Now we extend Definition 1 to vector functions:

Definition 2. Suppose that f(t) = [z1(t), z2(t), ..., z4(t)] is defined around to (but not necessarily
at ty). We say that

Jim ft) = [vi,ve, ..., 04

if it holds for each i € [1,d] that lim;_, x;(t) = v;.

!This means that there is a p > 0 such that f(t) is defined for ¢ satisfying 0 < |t — to| < p.



For example, suppose that f(t) = [t2,sin(¢)/t]. Since lim; ot = 0 and lim;_,o %

know that lim; o f(¢) = [0, 1].

=1, we

Definition 3. Suppose that f(t) = [z1(t), z2(t), ..., zq(t)] is defined around ty and at to. We say
that f(t) is continuous at to if lim;_, f(t) = f(to).

For example, f(t) = [t?,sin(t)/t] is not continuous at 0 because the function is undefined at
t = 0. On the other hand, f(t) = [t?, v/t +1] is continuous at ¢ = 0. However, the following function
is not continuous at ¢ = 0:

- [t2,V/t+1] ift#0
F) = {[0,2] ift =0

This is because lim;_,o f(¢) = [0, 1] # £(0).

3 Derivatives of Vector Functions

Recall that derivatives of scalar functions are defined as follows:

Definition 4. Suppose that scalar function f(t) is defined around ty and at ty. If the following
limat exists:

lim f(to + At) — f(to)
At—0 At

then we say that
e f(t) is differentiable at t.
e the above limit, denoted as f'(to), is the derivative of f(t) at t = tg.

We now extend the definition to vectors:

Definition 5. Suppose that vector function f(t) is defined around ty and at to. If the following
limit exists:

lim f(to + At) — f(to)
At—0 At

then we say that

e f(t) is differentiable at ty.
e the above limit, denoted as f(to), is the derivative of f(t) at t = t.

The next important lemma provides another view of the above definition through components:

Lemma 1. Suppose that f(t) = [z1(t),z2(t),...,z4(t)] is differentiable at ty such that f'(ty) =
[y1(to), y2(to), ---» ya(to)]. Then, yi(to) = x}(to) for each i € [1,d].

Proof. By definition of vector subtraction:

f(to + At) — f(t()) = [l‘l(t() + At) — ."L‘l(to), l‘Q(tO + At) — ."L‘z(to), ce l‘d(to + At) — l‘d(to)].



Since

F(to + At) — f(to)

lim o~ = [y1(t0), v2(to), ---» yalto)] (1)
we know
i (o + A1) — f(to)
At—0 At
— lim [Il (to + At) — xl(to), Ig(to + At) — xg(to), ey xd(to —+ At) — xd(to)]
At—0 At
e L r1(to + At) — x1(to) wa(to + At) — x2(to)  w1(to + At) — 21 (to)
(scalar multiplication) = Al}ﬁr_r}lo As , At ey At
(from (1)) = [y1(t0), y2(t0), .., ya(to)].

It thus follows from Definition 2 that, for each i € [1,d):

. l’i(to + At) — l’i(to) _ '
AT A - il

The left hand side of the above is precisely 2 (t9) by Definition 4. We thus complete the proof. [

The above lemma provides a convenient and intuitive way to compute the derivative of a
vector function. For example, consider f(t) = [sin?#,cos?¢]. Then we immediately know f'(t) =
[2sin(t) cos(t), —2sin(t) cos(t)].

Vector derivatives obey some rules that are reminiscent of the corresponding rules on scalar
functions:

L (f(t)+g(t) = f'(t) +g'(t).
2. () -g) = £'(t)-gt) + f(t) - g'(t).

3. Suppose that the outputs of f(¢) and g(t) are 3d vectors. Then, (f(t) x g(t)) = f'(t) x
g(t) + f(t) x g'(t).

Next, we will prove Rules 1 and 2 in full. The proof for Rule 3 is very tedious but not difficult; we
will outline its main ideas.

Proof of Rule 1. Let f( ) = [z1(t), ..., z4(t)] and ( ) = [y1(t), ..., ya(t)]. From Lemma 1, we know
that f(t) = [#](t), .., z4(t)] and g'(t )= (), - ya(t)]. We have:
(f&) +g®) = [z1(t) +y1(t), - wa(t) +ya(t)]
(by Lemma 1) = [(1(t) + 1 )) eor (a(t) + ya())']
= [2h) + (1), -, 25(1) + ya(t)]
= ft)+4'().



that f'(t) = [} (1), ...,2,(t)] and ¢'(t) = [y} (%), ..., y,(t)]. We have:

Il
N
=
8
=
Nt
<
~~
N
~

(f(®)-g(®))

d
= Z (i (t) - yalt) + ai(t) - yi(t))
1;1 ;
S TF) yit) + Y wa(t) - yi(t)
=1 i=1
= flt)-g(t) + f(t)-g'(1).
O

Proof of Rule 3 (Sketch). Let f(t) = [z1(t), z2(t), z3(t)] and g(t) = [y1(t), y2(t), y3(t)]. The key to
the proof is to write out both sides of Rule 2 in their component forms. For the left hand side, we
know:

(
= [za(t)ys(t) — z3(t)ya(t), x3(t)y1 (t) — 21 (t)ys(t), z1(t)y2(t) — z2(t)yi (1))
= [(wa(®)ys(t) — (z3(t)y2(t)), (@3(t)y1(1) — (z1(H)y3(t), (w1 ()y2(t) — (x2(t)p1(2)] -

You want to unfold the right hand side f'(t) x g(t) + f(t) x g’(t) into similar forms. Then, you
will see that both sides are equivalent. O



