Lecture Notes: Geometry of Vectors

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

Given an integer $d \ge 1$, we use \mathbb{R}^d to denote the *d*-dimensional space where each dimension has a domain of \mathbb{R} (recall that \mathbb{R} is the set of real values).

Recall that we have defined a *vector* as either a $d \times 1$ matrix (column vector) or a $1 \times d$ matrix (row vector). Our discussion henceforth will by default refer to row vectors simply as "vectors" (but the discussion can be generalized to column vectors in an obvious manner). Henceforth, a *d*-dimensional vector has the form $[v_1, v_2, ..., v_d]$, where each component v_i $(1 \le i \le d)$ is a real value. Boldfaces will be used to denote vectors, e.g., $\boldsymbol{v} = [v_1, v_2, ..., v_d]$. We use **0** to represent the specific vector [0, 0, ..., 0] called the *zero vector*. Recall that the *length*, also called the *norm*, of a vector $\boldsymbol{v} = [v_1, v_2, ..., v_d]$ is defined to be

$$|\boldsymbol{v}| = \sqrt{\sum_{i=1}^d v_i^2}.$$

We refer to \boldsymbol{v} as a *unit vector* if $|\boldsymbol{v}| = 1$.

Let $p_1 = (a_1, a_2, ..., a_d)$ and $p_2 = (b_1, b_2, ..., b_d)$ be two points in \mathbb{R}^d . They define a *directed* segment $\overrightarrow{p_1p_2}$ which is the segment connecting p_1 and p_2 , but also carrying a direction from p_1 to p_2 . As shown below, every directed segment defines a vector:

Definition 1. Given a directed segment $\overrightarrow{p_1p_2}$ where the points $p_1 = (a_1, a_2, ..., a_d), p_2 = (b_1, b_2, ..., b_d)$, we say that it **defines** a vector $[v_1, ..., v_d]$ where

$$v_i = b_i - a_i$$

for all $i \in [1, d]$.

For example, consider the segment \overrightarrow{AB} shown below. They define the vector [5,2]. Note that the length of this vector is precisely the length of \overrightarrow{AB} . For convenience, we will simply use the term "vector $\overrightarrow{p_1p_2}$ " to refer to the vector it defines. For example, [5,2] is the vector \overrightarrow{AB} .

The above geometry offers an intuitive understanding about vector additions and subtractions, as shown next:

Lemma 1. Suppose that \overrightarrow{PA} and \overrightarrow{AB} define vectors \mathbf{a} and \mathbf{b} , respectively. Then, \overrightarrow{PB} defines vector $\mathbf{a} + \mathbf{b}$; see Figure 1a.

Figure 1: Geometric view of vector addition and subtraction

Proof. Suppose that $\boldsymbol{a} = [a_1, a_2, ..., a_d]$ and $\boldsymbol{b} = [b_1, b_2, ..., b_d]$. Also, assume that $P = (p_1, p_2, ..., p_d)$, $A = (x_1, x_2, ..., x_d)$, and $B = (y_1, y_2, ..., y_d)$.

Because \overrightarrow{PA} and \overrightarrow{AB} define **a** and **b** respectively, we know

$$a_i = x_i - p_i, \forall i \in [1, d]$$

$$b_i = y_i - x_i, \forall i \in [1, d].$$

It thus follows that

$$a_i + b_i = y_i - p_i, \forall i \in [1, d]$$

Therefore, \overrightarrow{PB} defines a + b.

Corollary 1. Suppose that \overrightarrow{PA} and \overrightarrow{PB} define a and b, respectively. Then, \overrightarrow{AB} defines b - a; see Figure 1b.

Finally, when d = 3, we define 3 special unit vectors:

$$i = [1, 0, 0], j = [0, 1, 0], k = [0, 0, 1].$$

This allows us to represent a 3d vector $\boldsymbol{v} = [v_1, v_2, v_3]$ as $\boldsymbol{v} = v_1 \boldsymbol{i} + v_2 \boldsymbol{j} + v_3 \boldsymbol{k}$ (note that all the operators in this equation are now well defined). Similarly, when d = 2, we define 2 special unit vectors:

$$i = [1, 0], j = [0, 1].$$

A 2d vector $\boldsymbol{v} = [v_1, v_2]$ can therefore be represented as $\boldsymbol{v} = v_1 \boldsymbol{i} + v_2 \boldsymbol{j}$.