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1 Dimension of a Set of Vectors

Let V be a possibly infinite set of vectors. These vectors are either all row vectors or all column
vectors of the same length. We define the concepts dimension and basis for V as follows:

Definition 1. The dimension of V is the maximum number d of vectors v1,v2, ...,vd we can find
in V such that v1,v2, ...,vd are linearly independent. The set {v1,v2, ...,vd} is a basis of V .

Example 1. Let V be the set of all possible 1× 2 vectors. V has dimension 2. The set of vectors
[1, 0], [0, 1] is a basis of V . Note that bases are not unique: e.g., [1, 0], [0, 2] form another basis.

Example 2. Let V be the set of all possible 1×2 vectors [x, y] satisfying y = 3x. V has dimension
1. A basis is [1, 3]. You can verify that any two vectors in V must be linearly dependent.

Immediately, we have:

Lemma 1. Let {v1,v2, ...,vd} be a basis of V . Any vector u ∈ V is a linear combination of
v1,v2, ...,vd.

The proof should have become trivial for you at this moment. You are encouraged to verify the
lemma on the V in Examples 1 and 2.

When V is finite, its dimension and basis can be conveniently understood by resorting to a
matrix. For example, suppose that V has m 1× n vectors. Define an m× n matrix M whose i-th
row is the i-th vector of V , for each 1 ≤ i ≤ m. Then:

• The dimension d of V is simply the rank of M .

• A basis of V can be any set of d rows in M which are linearly independent.

2 Span

Let B be a possibly infinite set of vectors. These vectors are either all row vectors or all column
vectors of the same length. We define the span of B as follows:

Definition 2. The span of B is the set of vectors that can be obtained as linear combinations of
the vectors in B.

Note that the span V of B has an infinite size, and that B ⊆ V . V is sometimes also referred
to as the vector space determined by B.
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Example 3. Let B = {[1, 0], [0, 1]}; the span of B is the set of all possible 1×2 vectors. As another
example, let B = {[1, 0], [0, 1], [2, 3]}; the span of B is still the set of all possible 1× 2 vectors.

Example 4. Let B = {[1, 0, 0], [0, 1, 0]}; the span of B is the set of all possible 1×3 vectors [x, y, z]
satisfying z = 0. As another example, Let B = {[1, 0, 0], [0, 1, 0], [2, 3, 0]}; the span of B still the
same. But if B = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, then the span of B becomes the set of all possible 1×3
vectors.

Lemma 2. Let V be the span of B. The dimension of V equals the dimension of B.

Proof. Let dV be the dimension of V , and dB be the dimension of B. To establish the lemma, we
need to prove two directions:

Direction 1: dV ≥ dB. Suppose on the contrary that dV < dB. Then, any set of at least dV + 1
vectors in V must be linearly dependent. As B ⊆ V , it follows that any set of dB ≥ dV + 1 vectors
in B must be linearly dependent. But this contradicts the fact that the dimension of B is dB.

Direction 2: dB ≥ dV . Let {b1, b2, ..., bdB} be a basis of B. By definition of span, we know that
any vector in V is a linear combination of b1, b2, ..., bdB . Hence, dB ≥ dV , by definition of dV .

You are encouraged to verify the lemma on the B in Examples 3 and 4. Next we give a slightly
more sophisticated example with an infinite B.

Example 5. Consider that B is the set of vectors [x, y] satisfying

0 ≤ x ≤ 1

0 ≤ y ≤ 1

The dimension of B is 2. What is the span of B? The answer is the set V of all possible 1 × 2
vectors. The dimension of V is 2, too.

3 Linear Transformation

Let V1 be a set of n × 1 vectors. Let A be an m × n matrix. Then, given a vector v ∈ V1, define
function

f(v) = Av.

Note that f(v) is an m× 1 vector. Define:

V2 =
{
f(v)

∣∣ v ∈ V1

}
(1)

We say that function f is a linear transformation from V1 to V2. Also, we refer to f(v) as the
image of v.

Example 6. Let V1 be all the 2× 1 vectors

[
x
y

]
. Define f(

[
x
y

]
) =

 u
v
w

 where

u = 2x + y

v = −x− y

w = 3x + 4y
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The linear transformation can also be written as u
v
w

 =

 2 1
−1 −1
3 4

[ x
y

]
.

Lemma 3. The dimension of V2 is at most the dimension of V1.

Proof. Let d be the dimension of V1, and {v1, ...,vd} be a basis of V1. We will show that any vector
u ∈ V2 is a linear combination of f(v1), ...,f(vd). This will complete the proof.

Without loss of generate, suppose that u = Av for some v ∈ V1. If v = vi for some 1 ≤ i ≤ d,
then

u = 1 ·Avi + 0 ·
∑
j 6=i

Avj = 1 · f(vi) + 0 ·
∑
j 6=i

f(vj);

and our claim is true.

Now consider that v /∈ {v1, ...,vd}. We know that v must be a linear combination of v1, ...,vd:

v =

d∑
i=1

ci · vi

for some real-valued constants c1, ..., cd. Thus:

Av =
d∑

i=1

ci ·Avi

⇒ u =

d∑
i=1

ci · f(vi)

The lemma confirms the following intuition: no new information is generated by the linear
transformation. To understand this, consider Example 6 again. V1 clearly has dimension 2. The
set V2 obtained by f contains 3× 1 vectors. So it may appear that V2 had a dimension of 3. The
above lemma shows that this is impossible: indeed, the dimension of V2 is 2.
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