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In this lecture, we will introduce an important technique on matrices called similarity transfor-
mation. This technique is especially powerful in computing a high power of a matrix. Also, the
technique will allow you to start appreciating the usefulness of eigenvalues and eigenvectors.

1 Matrix Similarity

Let us start by defining similar matrices:

Definition 1. Let A and B be n×n matrices. If we can find a non-singular n×n matrix P such
that

A = P−1BP (1)

then we say that A and B are similar to each other.

Note that (1) implies

PAP−1 = PP−1BPP−1 ⇒
PAP−1 = IBI ⇒ (I is the n× n identity matrix)

B = PAP−1

In other words, in declaring matrix similarity, it does not matter which matrix (A or B) is on the
left hand side, and which gets multiplied with two other matrices.

There are numerous reasons why A and B are called similar. The following are two of them:

Lemma 1. If A and B are similar, then they have the same rank.

Proof. In general, let C be an n× n matrix with rank n. Then, both CA and AC have the same
rank as A (the proof of this statement is left to you; hint: linear transformation and C has an
inverse). Then, the lemma follows from the fact that both P and P−1 have rank n.

Lemma 2. If A and B are similar, then their characteristic equations imply each other; and hence,
A and B have exactly the same eigenvalues.
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Proof. By symmetry, we will only show that the characteristic equation of A implies that of B,
namely, det(A− λI) = 0 implies det(B − λI) = 0. In fact:

det(A− λI) = 0 ⇒
det(P−1BP − λP−1IP ) = 0 ⇒

det(P−1BP − P−1(λI)P ) = 0 ⇒
det(P−1(B − λI)P ) = 0 ⇒

det(P−1) · det(B − λI) · det(P ) = 0 ⇒

Since det(P−1) 6= 0 and det(P ) 6= 0 (actually, we have det(P−1)det(P ) = 1), the above leads to
det(B − λI) = 0.

As mentioned earlier, matrix similarity is useful in computing a high power of a matrix. This
is achieved by using the property below:

Lemma 3. Let A and B be similar matrices. For any integer t ≥ 1, it holds that

At = P−1BtP .

Proof.

A2 = (P−1BP )(P−1BP )

= P−1BIBP

= P−1B2P

A3 = (P−1B2P )(P−1BP )

= P−1B2IBP

= P−1B3P

Extending the argument to general t proves the lemma.

Therefore, instead of computing At, we could instead compute Bt, provided that the latter
is easier to work with. What kind of B would allow us to compute Bt quickly? An answer is:
diagonal matrices, as shown in the next section.

2 Diagonal Matrices

Let D be an n × n diagonal matrix, namely, any entry of D not on the main diagonal of D
is 0. Sometimes, we may use diag [d1, d2, ..., dn] as a short form for a diagonal matrix, where di
(1 ≤ i ≤ n) is the element at the i-th row of the diagonal of D, namely:

diag [d1, d2, ..., dn] =


d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn


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Computation on diagonal matrices is often fairly easy. Let A = [aij ] be an n×n matrix. Then:
a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann



d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn

 =


d1a11 d2a12 ... dna1n
d1a21 d2a22 ... dna2n

... ... ... ...
d1an1 d2an2 ... dnann


The effect of the multiplication is essentially to multiple the i-th (1 ≤ i ≤ n) column of A by di.
Likewise:

d1 0 ... 0
0 d2 ... 0
... ... ... ...
0 0 ... dn



a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann

 =


d1a11 d1a12 ... d1a1n
d2a21 d2a22 ... d2a2n

... ... ... ...
dnan1 dnan2 ... dnann


The effect is essentially to multiple the i-th (1 ≤ i ≤ n) row of A by di.

Further, powers of D are very easy to obtain. Specifically, if D = diag [d1, d2, ..., dn], then for
any integer t ≥ 1, it holds that

Dt = diag [dt1, d
t
2, ..., d

t
n].

Another wonderful property of a diagonal matrix is that its eigenvalues are trivial to acquire:

Lemma 4. The eigenvalues of D = diag [d1, d2, ..., dn] are precisely d1, d2, ..., dn.

Proof. The characteristic equation of D is

det(D − λI) = 0 ⇒
(λ− d1)(λ− d2)...(λ− dn) = 0.

The lemma thus follows.

3 Similarity Transformation to a Diagonal Matrix

Henceforth, we will focus on only a special type of similarity transformation. Look at Definition 1
again. Given a matrix A, we will strive to find a diagonal matrix to serve as the matrix B. An
important reason why we want to do so is that, as mentioned earlier, it allows us to compute At

easily.

Example 1. Consider

A =

 1 −1 2
0 0 1
0 4 0


Later, we will show:

A =

 1 5 3
0 3 1
0 −6 2

 diag [1,−2, 2]

 1 −7/3 −1/3
0 1/6 −1/12
0 1/2 1/4


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Therefore,

At =

 1 5 3
0 3 1
0 −6 2

 diag [1, (−2)t, 2t]

 1 −7/3 −1/3
0 1/6 −1/12
0 1/2 1/4



Given A, we refer to the process of finding a diagonal matrix B as a diagonalization of A (in
Example 1, B = diag [1, 2,−2]). If such B exists, we say that A is diagonalizable. Unfortunately,
not all the n× n matrices are diagonalizable. The next lemma gives an if-and-only-if condition for
a matrix to be diagonalizable.

Lemma 5. An n × n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors v1, v2, ..., vn.

Although we will not present a formal proof of the lemma, we give a precise procedure to
diagonalize A when it is possible to do so (this procedure essentially proves the if-direction; the
only-if direction follows similar ideas, and is left to you). As stated in the lemma, A needs to have
n linearly independent eigenvectors v1, v2, ..., vn. Let λ1, λ2, ..., λn be the eigenvalues that v1, v2,
..., vn correspond to, respectively. Then, we construct:

• an n× n matrix Q by placing vi as the i-th column of Q (1 ≤ i ≤ n).

• an n× n diagonal matrix B = diag [λ1, λ2, ..., λn].

The above construction definitely ensures that A = QBQ−1 (if you insist on the form in Defini-
tion 1, set P = Q−1), as illustrated in the following example.

Example 2. Consider again the matrix A in Example 1. Its characteristic equation is (λ− 1)(λ+
2)(λ− 2) = 0. Hence, A has eigenvalues λ1 = 1, λ2 = −2, and λ3 = 2.

For eigenvalue λ1 = 1, an eigenvector is

 1
0
0

. For eigenvalue λ2 = −2, an eigenvector

is

 5
3
−6

. For eigenvalue λ3 = 2, an eigenvector is

 3
1
2

. These 3 eigenvectors are linearly

independent.

Therefore, by the diagonalization method described earlier, we have:

A = Q diag [1,−2, 2]Q−1

where

Q =

 1 5 3
0 3 1
0 −6 2


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A remark is in order at this point. So we have seen that if A is diagonalizable, At can be
computed easily. But then how to compute At when A is not diagonalizable? Unfortunately, this
is not always easy; as far as this course is concerned, there are no clever tricks to do so.

4 A Sufficient Condition for Diagonalization

Although the diagonalization approach of the previous section is fairly effective, its application
requires us to check whether the eigenvectors we have obtained are linearly independent. Next, we
give a lemma that allows us to skip the check-up in some situations.

Lemma 6. Suppose that A has n distinct eigenvalues λ1, λ2, ..., λn. Let v1, v2, ..., vn be eigen-
vectors of A corresponding to those eigenvalues, respectively. Then, v1, v2, ..., vn must be linearly
independent.

Proof. Suppose on the contrary that there are at most only r < n linearly independent vectors
among v1, v2, ..., vn. Without loss of generality, assume the r vectors to be v1, v2, ..., vr. Hence,
v1, v2, ..., vr+1 are linearly dependent, such that there exist real values c1, c2, ..., cr+1 that are not
all 0, and make the following equation hold

c1v1 + c2v2 + ...+ cr+1vr+1 = 0 ⇒ (2)

c1Av1 + c2Av2 + ...+ cr+1Avr+1 = 0 ⇒
c1λ1v1 + c2λ2v2 + ...+ cr+1λr+1vr+1 = 0 (3)

From (2) and (3), we obtain:

c1(λr+1 − λ1)v1 + c2(λr+1 − λ2)v2 + ...+ cr(λr+1 − λr)vr = 0.

The linear independence of v1, v2, ..., vr asserts that c1(λr+1 − λ1) = c2(λr+1 − λ2) = ... =
c1(λr+1 − λr) = 0. As the eigenvalues are mutually different, we have c1 = c2 = ... = cr = 0.
However, looking at (2) now and using the fact vr+1 6= 0, we know that cr+1 = 0. This is a
contradiction to c1, ..., cr+1 not all being 0.

Example 3. In Example 2, the matrix A has distinct eigenvalues: 1, −2, 2. Let v1,v2,v3 be
any eigenvectors corresponding to 1, −2, 2, respectively. By the above lemma, v1,v2,v3 must be
linearly independent. Hence, we can definitely use v1,v2,v3 to perform diagonalization as described
in Section 3.

We should note, once again, that Lemma 6 is a sufficient condition. In other words, even if A
does not have n distinct eigenvalues, it may still be possible that A can be diagonalized. We will
see an example in the next section.

5 Symmetric Matrices are Always Diagonalizable

Recall that an n× n matrix A is symmetric if A = AT . In this lecture, we will be satisfied by the
following result, while later in the course we will see a stronger version of it:

Lemma 7. A symmetric n× n matrix A definitely has n linearly independent eigenvectors.

5



The lemma, combined with Lemma 5, indicates that a symmetric matrix can always be diago-
nalized, regardless of how many distinct eigenvalues A has.

Example 4. Consider

A =

 0 −1 1
−1 0 1
1 1 0


Its characteristic equation is (λ−1)2(λ+2) = 0. Hence, A has two eigenvalues λ1 = 1 and λ2 = −2.

For eigenvalue λ1 = 1, all the eigenvectors can be represented as x =

 x1
x2
x3

 satisfying:

x1 = v − u, x2 = u, x3 = v

with u, v ∈ R. Setting (u, v) to (1, 0) and (0, 1) respectively gives us two linearly independent
eigenvectors:

x1 =

 −1
1
0

 ,x2 =

 1
0
1



For eigenvalue λ2 = −2, all the eigenvectors can be represented as x =

 x1
x2
x3

 satisfying:

x1 = −t, x2 = −t, x3 = t

with t ∈ R. Setting t = 1 gives us another eigenvector:

x3 =

 −1
−1
1


Vectors x1, x2, and x3 are linearly independent. Therefore, by the diagonalization method in
Section 3, we have:

A = Q diag [1, 1,−2]Q−1

where

Q =

 −1 1 −1
1 0 −1
0 1 1


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Appendix: Example of a Non-Diagonalizable Matrix

Consider

A =

 −1 1 0
−4 3 0
1 0 2


Its characteristic equation is

(λ− 1)2(λ− 2) = 0.

Hence, A has only 2 eigenvalues: λ1 = 1 and λ2 = 2.

Focus now on the eigenvalue λ1 = 1. To find its corresponding eigenvectors x =

 x1
x2
x3

, we

solve the equation:

(A− λ1I)x = 0 ⇒ −2 1 0
−4 2 0
1 0 1

 x1
x2
x3

 = 0 ⇒

 −2 1 0
0 1/2 1
0 0 0

 x1
x2
x3

 = 0 ⇒

Hence, we know that

−2x1 + x2 = 0

(1/2)x2 + x3 = 0

Therefore, the set of solutions to the above problem is the set EigenSpace(λ1) of vectors

 −t
−2t
t


for all t ∈ R. This set has dimension 1. This means that it is hopeless to pick 2 eigenvectors of λ1
that are linearly independent.

You can also verify that it is impossible to pick 2 eigenvectors of λ2 that are linearly independent
(actually, this is quite obvious if you still remember that the geometric multiplicity of λ2 cannot
exceed its algebraic multiplicity, which is 1).

It follows that A has only 2 eigenvectors that are linearly independent. By Lemma 5, we know
that A is not diagonalizable.
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