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1 Inverse Definition

We use I to represent identity matrices, namely, diagonal matrices where all the elements on the
main diagonal are 1.

Definition 1. Let A and B be n× n matrices. If AB = I, then we say that B is the inverse of
A, denoted as A−1.

For example, let

A =

 0 2 0
1 0 4
0 −2 1

 ,B =

 −4 1 −4
1/2 0 0
1 0 1


You can verify that AB =

 1 0 0
0 1 0
0 0 1

. Hence, B = A−1. Some square matrices have no

inverses. For example,

 0 2 0
1 0 4
2 4 8

 has no inverse (you are encouraged to make an attempt to

find it, and see where you will get stuck).

Definition 2. An n× n matrix A is said to be

• singular if it does not have an inverse;

• non-singular if it does.

2 Inverse Existence and Uniqueness

Lemma 1. An n×n matrix A has an inverse if and only if A has rank n (equivalently, det(A) 6= 0).

Proof. If-Direction. If A has rank n, the linear system Ax = b has a unique solution for any b.
Denote by bi the i-th column (1 ≤ i ≤ n) of the n×n identity matrix I, and xi the solution of the
system Axi = bi. Then, we obtain A−1 by placing xi as the i-th column of A−1, for each i ∈ [1, n].

Only-If Direction. Now consider that A−1 exists, i.e., there is a matrix B such that AB = I.

Hence, BTAT = I.

Given any linear system ATx = b, we have BTATx = BTb, which gives x = BTb. This
indicates that ATx = b has at least one solution1. More subtly, this also implies that ATx = b

1Strictly speaking, we still need to show AT (BT b) equals b. This is in fact a simple corollary of Lemma 2 (which
we will prove shortly), and is left to you to figure out.
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has a unique solution. To see this, suppose that there was another solution x′ 6= x. By the same
derivation, we get x′ = BTb = x, giving a contradiction.

ATx = b having a unique solution means that AT has rank n. It thus follows that the rank of
A is also n.

Corollary 1. If A−1 exists, it is unique.

Proof. This in fact follows from the argument we used to prove the “if-direction” of Lemma 1.

Lemma 2. Let A and B be n× n matrices. If AB = I, then BA = I.

Proof. We first prove that B has rank n. Indeed:

rankB = rankBT ≥ rank(BTAT ) = rank(AB) = rank(I) = n.

Hence, by Lemma 1, we know that B has an inverse, say, X; namely, BX = I. Equipped with
this, we can show BA = I as follows:

BA = BAI

= BABX

= B(AB)X

= BIX

= BX

= I.

In other words, if B is A−1, then A = B−1.

3 More Properties of Inverses

Lemma 3. Let A,B be n× n non-singular matrices. Then, (AB)−1 = B−1A−1.

Proof.

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

Hence, (AB)−1 = B−1A−1.

Lemma 4. Let A be an n× n non-singular matrix. Then, (AT )−1 = (A−1)T .

Proof. It suffices to prove that AT (A−1)T = I. This is true because

(AT (A−1)T )T = A−1A = I.

Lemma 5. Let A be an n× n non-singular matrix. Then, det(A−1) = 1/det(A).

Proof.

det(A) · det(A−1) = det(AA−1) = det(I) = 1.

The lemma thus follows.

Lemma 6. Let A,B and C be n×n matrices. If A is non-singular and AB = AC, then B = C.

Proof. From AB = AC, we have A−1AB = A−1AC, which gives B = C.
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4 Inverse Computation: Gauss-Jordan Elimination

We will use an example to illustrate how to compute the inverse of a matrix A. Consider that

A =

 0 2 0
1 0 4
0 -2 1


Suppose that we do not know what is A−1; hence, we assume:

A−1 =

 x11 x12 x13
x21 x22 x23
x31 x32 x33


Remember that we want 0 2 0

1 0 4
0 -2 1

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 =

 1 0 0
0 1 0
0 0 1


This is essentially to solve three linear systems: 0 2 0

1 0 4
0 -2 1

 x11
x21
x31

 =

 1
0
0

 (1)

 0 2 0
1 0 4
0 -2 1

 x12
x22
x32

 =

 0
1
0

 (2)

 0 2 0
1 0 4
0 -2 1

 x13
x23
x33

 =

 0
0
1

 (3)

Now we can focus on solving these systems respectively using Gauss Elimination. For example, to
solve the linear system (1), we look at the augmented matrix: 0 2 0 1

1 0 4 0
0 -2 1 0

⇒
 1 0 4 0

0 2 0 1
0 -2 1 0

⇒
 1 0 4 0

0 2 0 1
0 0 1 1

 (4)

Usually, we would start back substitution from here, but now we take a different approach. In
particular, we will show that (since the system has a unique solution) it is possible to get rid of
back substitution, but instead, continue to use elementary row operations to make the left side of
the vertical bar an identity matrix. Then, the solution of the system will present itself. Specifically:

(4)⇒

 1 0 4 0
0 1 0 1/2
0 0 1 1

⇒
 1 0 0 -4

0 1 0 1/2
0 0 1 1


It is thus clear that x11 = −4, x21 = 1/2, x31 = 1. The above method is an extension of Gauss
elimination, and is referred to as Gauss-Jordan elimination.
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Now you may proceed to solve (2) and (3) in the same way. You will then realize that the
operations done to the left of the vertical line are always the same. Motivated by this, we can solve
all three systems (1)-(3) together in one go, as illustrated below: 0 2 0 1 0 0

1 0 4 0 1 0
0 -2 1 0 0 1

 ⇒

 1 0 4 0 1 0
0 2 0 1 0 0
0 -2 1 0 0 1


⇒

 1 0 4 0 1 0
0 2 0 1 0 0
0 0 1 1 0 1


⇒

 1 0 4 0 1 0
0 1 0 1/2 0 0
0 0 1 1 0 1


⇒

 1 0 0 -4 1 -4
0 1 0 1/2 0 0
0 0 1 1 0 1


What is now on the right side of the bar is exactly A−1. It is important to observe that the above
process has in fact embedded the Gauss-Jordan elimination for solving all three linear systems
(1)-(3).

5 Inverse Formula

It is possible to give a general formula for the inverse of an n×n non-singular matrix A. As before,
given i, j ∈ [1, n], we denote by M ij the (n− 1)× (n− 1) matrix obtained from A after discarding
its i-th row and j-th column. Also, define:

Cij = (−1)i+j · det(M ij).

Then we have:

Lemma 7.

A−1 =
1

det(A)


C11 C21 ... Cn1

C12 C22 ... Cn2

... ... ... ...
C1n C2n ... Cnn

 .

We skip a proof of the lemma, but illustrate it with an example.

Example 1. Consider once again

A =

 0 2 0
1 0 4
0 -2 1

 ,
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We have: det(A) = −2. Also:

M11 =

[
0 4
-2 1

]
, and thus C11 = 8

M12 =

[
1 4
0 1

]
, and C12 = −1

M13 =

[
1 0
0 -2

]
, and C13 = −2

M21 =

[
2 0
-2 1

]
, and C21 = −2

M22 =

[
0 0
0 1

]
, and C22 = 0

M23 =

[
0 2
0 -2

]
, and C23 = 0

M31 =

[
2 0
0 4

]
, and C31 = 8

M32 =

[
0 0
1 4

]
, and C32 = 0

M33 =

[
0 2
1 0

]
, and C33 = −2

Therefore, by Lemma 7, we have:

A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33

 .

= −1

2

 8 −2 8
−1 0 0
−2 0 −2

 =

 −4 1 −4
1/2 0 0
1 0 1

 .
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