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1 Echelon Form and Elementary Row Operations

Let B be an m× n matrix. We say that B is in row echelon form if it satisfies all of the following
conditions:

• If B has rows consisting of only 0’s, such rows appear consecutively at the bottom of B.

• For i ∈ [1,m− 1], the leftmost non-zero element of the i-th row is at a column that is strictly
to the left of the column containing the leftmost non-zero element of the (i + 1)-th row.

For example, matrices

 1 2 3 4
0 5 6 7
0 0 0 1

,

 1 2 3 4
0 0 6 7
0 0 0 1

, and

 1 2 3 4
0 0 6 7
0 0 0 0

 are all in row

echelon form, but

 1 2 3 4
0 5 6 7
3 0 0 1

,

 0 2 3 4
0 2 6 7
0 0 0 1

, and

 0 0 0 0
1 2 3 4
0 0 6 7

 are not.

We define three elementary row operations on B:

1. Switch two rows of B.

2. Multiply all numbers of a row by the same non-zero value.

3. Let ri and rj be two row vectors of B. Update row ri to ri + rj .

Any matrix B can be converted into a matrix in row echelon form by performing only elementary
row operations. We demonstrate the steps using an example.

Example 1. We will convert the matrix below into row echelon form:
0 3 0 4
2 1 6 3
1 0 5 1
0 8 3 2

 (1)

First, switch the rows so that the leftmost non-zero element of any row starts at a column that
is the same as or to the left of the column containing the leftmost non-zero element of the next
row. The following is a matrix satisfying the condition:

2 1 6 3
1 0 5 1
0 3 0 4
0 8 3 2


1



Let r1, r2, ..., r4 be the 1st, 2nd, ..., and 4th rows, respectively. Our next goal is to convert the
first element of r2, r3, and r4 to 0. Rows r3 and r4 already satisfy the condition. As for r2, we
can make it satisfy the condition by replacing it with −1

2r1 + r2, which gives the following matrix:
2 1 6 3
0 −0.5 2 −0.5
0 3 0 4
0 8 3 2


Henceforth, we will not touch the first row any more. Our next goal is to convert the second element
of r3 and r4 to 0. Regarding r3, this can be achieved by replacing it with 6r2 + r3, leading to:

2 1 6 3
0 −0.5 2 −0.5
0 0 12 1
0 8 3 2


Similarly, replacing r4 with 16r2 + r4 gives:

2 1 6 3
0 −0.5 2 −0.5
0 0 12 1
0 0 35 −6


Henceforth, we will not touch the first two rows any more. Our next goal is to convert the third
element of r4 to 0, as can be achieved by replacing it with −35

12r3 + r4, giving:
2 1 6 3
0 −0.5 2 −0.5
0 0 12 1
0 0 0 −107/12

 (2)

The matrix is now in row echelon form.

2 Matrix Form of Linear Equations

Consider that we have a system of line equations (such as a system is called a linear system):

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

...

am1x1 + am2x2 + ... + amnxn = bm

Note that the system has m equations about n variables x1, .., xn. If we introduce:

A =


a11 a12 ... a1n
a21 a22 ... a2n
...
an1 an2 ... amn

 , x =


x1
x2
...
xn

 , and b =


b1
b2
...
bm


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then we can concisely represent the linear system with matrix multiplication:

Ax = b.

If b = 0, we say that the system is homogeneous system; otherwise, it is nonhomogeneous system.
If the system has at least one solution, we say that the system is consistent; otherwise, it is
inconsistent.

We define the augmented matrix of A, denoted as Ã, by including b into A as the last column,
namely:

Ã =


a11 a12 ... a1n b1
a21 a22 ... a2n b2
...
am1 am2 ... amn bn


Note that the vertical bar between the last two columns is just a reminder that this is an augmented
matrix; the bar can be omitted if as desired. It is obvious that a linear system uniquely corresponds
to an augmented matrix, and vice versa.

Example 2. Consider the following linear system:

x1 + 2x2 + 3x3 = 4

2x1 − x2 − 2x3 = 2

The corresponding augmented matrix is:

Ã =

[
1 2 3 4
2 −1 −2 2

]

3 Gauss Elimination

Suppose that we are given a linear system Ax = b. Let Ã be the augmented matrix of A. Consider
that we perform elementary row operations to convert Ã into another matrix Ã′. The linear system
corresponding to Ã′ has exactly the same solutions as the linear system corresponding to Ã. In
other words, elementary row operations do not change the solutions of a linear system. We say
that Ã and Ã′ are row equivalent.

Example 3. Consider the augmented matrix Ã shown in Example 2. All the following matrices
are row equivalent to Ã (think: which elementary row operations were used to derive them?):[

2 −1 −2 2
1 2 3 4

]
,

[
2 −1 −2 2
2 4 6 8

]
,

[
2 −1 −2 2
4 3 4 10

]
Note that the last matrix corresponds to the following linear system:

2x1 − x2 − 2x3 = 2

4x1 + 3x2 + 4x3 = 10

Verify that this system has the same solutions as the system in Example 2.
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Motivated by the above observation, we can solve the linear system Ax = b by converting it to
another linear system A′x = b′ whose augmented matrix is in row echelon form, as demonstrated
in the next few examples.

Example 4. Consider the following linear system:

3x2 = 4

2x1 + x2 + 6x3 = 3

x1 + 5x3 = 1

8x2 + 3x3 = 2.

Solution. The augmented matrix of the linear system is matrix (1), which can be converted to the
(row-equivalent) matrix in (2) of row echelon form, as shown in Example 1. (2) is the augmented
matrix of the following linear system:

2x1 + x2 + 6x3 = 3

(−0.5)x2 + 2x3 = −0.5

12x3 = 1

0 = −107/12.

The system clearly has no solution.

Example 5. Consider the following linear system:

3x2 = 4

2x1 + x2 + 6x3 = 3

x1 + 5x3 = 1.

Solution. The augmented matrix of the linear system is 0 3 0 4
2 1 6 3
1 0 5 1


which can be converted to the following matrix of row echelon form 2 1 6 3

0 −0.5 2 −0.5
0 0 12 1


This matrix is the augmented matrix of the following linear system:

2x1 + x2 + 6x3 = 3 (3)

(−0.5)x2 + 2x3 = −0.5 (4)

12x3 = 1. (5)

Now we can do back substitution to obtain a unique solution. First, (5) gives x3 = 1/12. Then,
substituting this into (4), we get x2 = 4/3. Finally, substituting the values of x2 and x3 into (3),
we get x1 = 7/12.
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Example 6. Consider the following linear system:

3x2 = 4

2x1 + x2 + 6x3 = 3

4x1 + 5x2 + 12x3 = 10

Solution. The augmented matrix of the linear system is 0 3 0 4
2 1 6 3
4 5 12 10


which can be converted to the following matrix of row echelon form 2 1 6 3

0 3 0 4
0 0 0 0


This matrix is the augmented matrix of the following linear system:

2x1 + x2 + 6x3 = 3

3x2 = 4

The system has infinitely many solutions.

The above method is called Gauss elimination. From the earlier examples, we can see that a
linear system may have

• no solution—in this case, we say that the system is over-determined;

• a unique solution—in this case, we say that the system is determined;

• infinitely many solutions—in this case, we say that the system is under-determined.
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