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Let C be a piecewise-smooth curve from point p = (0, 0) to q = (1, 1) in R2. Would you be able to
calculate the following line integral? ∫

C
y dx + x dy. (1)

You may sense that something is missing: the details of C have not been given yet! It turns out
that we do not need those details to evaluate the integral. In other words, the result of the integral
will always be the same regardless of C. Furthermore, introducing g(x, y) = xy, we will learn that
the result of (1) is definitely g(1, 1)− g(0, 0) = 1!

Line integrals such as (1) constitute a path independent set. In this lecture, we will study this
interesting type of line integrals.

1 Path Independence in R2

Definition 1. Fix scalar functions f1(x, y) and f2(x, y). Define S to be the set of all possible line
integrals of the form ∫

C
f1 dx + f2 dy

where C can be any piecewise smooth arc with a starting point and an ending point. S is path
independent if ∫

C1

f1 dx + f2 dy =

∫
C2

f1 dx + f2 dy.

holds for any C1 and C2 in S that share the same starting and ending points.

The following theorem gives a convenient way to judge whether S is path independent.

Theorem 1. Suppose that ∂f1
∂y and ∂f2

∂x are both continuous in R2. S is path independent if and
only if

∂f1

∂y
=

∂f2

∂x
. (2)

Proof. See Appendix A.

Example 1. Consider the set S of line integrals of the form:∫
C
y dx + x dy
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where C is a piecewise smooth arc in R2. By Theorem 1, we know that S is path independent
because ∂f1

∂y = ∂f2
∂x = 1, where f1 = y and f2 = x.

Now, consider S instead to be the set of line integrals of the form∫
C
y2(sin(x) + x · cos(x)) dx + 2xy sin(x) dy

where C is a piecewise smooth arc in R2. Here, f1 = y2(sin(x) + x · cos(x)) and f2 = 2xy sin(x).
Since ∂f1

∂y = ∂f2
∂x = 2y(sin(x) + x · cos(x)), S is path independent.

2 Line Integral Evaluation under Path Independence: Method 1

After realizing path independence, we may choose to evaluate a line integral along a simpler arc to
make calculation easier, as is demonstrated in the example below.

Example 2. Suppose that we want to calculate∫
C
y dx + x dy

where C is the arc from (0, 0) to (1, 1) on the curve r(t) = [ 4
π2 t

2 sin t, 2
πeπ/2

t ·et]. Note that the curve
is deliberately chosen to be complicated to make it difficult and tedious to compute the integral
using the methods taught in previous lectures.

On the other hand, Example 1 tells us that the value of the integral will not be affected if we
replace C with any piecewise smooth arc C ′ from (0, 0) to (1, 1). Let us choose C ′ to be the straight
line segment directed from (0, 0) to (1, 1). In other words, C ′ is an arc on the curve r′(t) = [t, t]
defined by increasing t from 0 to 1. Hence:

∫
C
y dx + x dy =

∫ 1

0
t
dx

dt
dt + t

dy

dt
dt

=

∫ 1

0
2t dt = 1

3 Line Integral Evaluation under Path Independence: Method 2

In this section, we will introduce another method to evaluate a line integral based on path inde-
pendence. This method requires us to figure out an “original function”. Once we have managed to
do so, the line integral becomes trivial to evaluate.

Let us start by stating an important theorem:

Theorem 2. Fix scalar functions f1(x, y) and f2(x, y). Suppose that ∂f1
∂y and ∂f2

∂x are both contin-

uous in R2. If

∂f1

∂y
=

∂f2

∂x
(3)

then there exists a function g(x, y) such that

f1(x, y) =
∂g

∂x
, and f2(x, y) =

∂g

∂y
. (4)
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Proof. See Appendix B.

Example 3. Consider f1 = y and f2 = x. Since ∂f1
∂y = ∂f2

∂x = 1, Theorem 2 asserts that there must

be an “original function” g(x, y) satisfying f1(x, y) = ∂g
∂x and f2(x, y) = ∂g

∂y . For example, one such
function is g(x, y) = xy.

Consider instead f1 = y2(sin(x)+x ·cos(x)) and f2 = 2xy sin(x). Since ∂f1
∂y = ∂f2

∂x = 2y(sin(x)+
x · cos(x)), we must be able to find an “original function” g(x, y), an example of which is g(x, y) =
x sin(x) · y2.

Now consider a path-independent set S of line integrals of the form∫
C
f1 dx + f2 dy.

By Theorem 1, f1 and f2 obey (2). Let g(x, y) be any “original function” promised by Theorem 2.
For simplicity, we may also write g(x, y) as g(p) where p is the point (x, y). The next theorem
provides an extremely simple way to evaluate a line integral from S:

Theorem 3. Suppose that C is an arc from point p to point q. Then:∫
C
f1 dx + f2 dy = g(q)− g(p).

Proof. See Appendix C.

Example 4. Let us reconsider the line integral in Example 1. Since there is an original function
g(x, y) = xy satisfying f1(x, y) = ∂g

∂x and f2(x, y) = ∂g
∂y , Theorem 3 tells us that the value of the

line integral can be obtained immediately as g(1, 1)− g(0, 0) = 1.

Example 5. Suppose that we want to calculate:∫
C
y2(sin(x) + x · cos(x)) dx +

∫
C

2xy sin(x) dy. (5)

where C is the arc from (0, 0) to (1, 1) on the curve r(t) = [ 4
π2 t

2 sin t, 2
πeπ/2

t · et].
Define f1 = y2(sin(x) + x cos(x)) and f2 = 2xy sin(x). Since there exists g(x, y) = x sin(x) · y2

satisfying ∂g
∂x = f1 and ∂g

∂y = f2, we know by Theorem 3 that (5) = g(1, 1)− g(0, 0) = sin(1).

4 Path Independence in Rd

The discussion in the above sections can be generalized to Rd for an arbitrary d. Fix d scalar
functions f1(x1, x2, ..., xd), f2(x1, x2, ..., xd), ..., and fd(x1, x2, ..., xd). Define S to be the set of all
possible line integrals of the form∫

C
f1 dx1 + f2 dx2 + ... + fd dxd

where C is a piecewise smooth arc in Rd.
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Definition 2. We say that S is path independent if∫
C1

f1 dx1 + f2 dx2 + ... + fd dxd =

∫
C2

f1 dx1 + f2 dx2 + ... + fd dxd

holds for any two piecewise-smooth arcs C1 and C2 in Rd that share the same starting and ending
points.

We state the next theorem without proof:

Theorem 4. S is path independent if and only if we can find a function g(x1, x2, ..., xd) such that

f1(x1, .., xd) =
∂g

∂x1
(x1, .., xd)

f2(x1, .., xd) =
∂g

∂x2
(x1, .., xd)

...

fd(x1, .., xd) =
∂g

∂xd
(x1, .., xd).

When S is path independent, for any points p = (xp1 , xp2 , ..., xpd), q = (xq1 , xq2 , ..., xqd), and any
piecewise-smooth curve C from p to q, it holds that∫

C
f1 dx1 + f2 dx2 + ... + fd dxd = g(xq1 , xq2 , ..., xqd)− g(xp1 , xp2 , ..., xpd).

Example 6. Let C be a piecewise smooth curve from point p = (2, 3, 4) to q = (1, 1, 1) in R3, but
the other details of C are hidden from you. Calculate:∫

C
2xy2z dx + 2x2yz dy + x2y2 dz. (6)

Solution. Let g(x, y, z) = x2y2z. Clearly, ∂g
∂x = 2xy2z, ∂g

∂y = 2x2yz, and ∂g
∂z = 2x2y2. Hence, by

Theorem 4, (6) = g(2, 3, 4)− g(1, 1, 1) = 143.

A Proof of Theorem 1

The If-Direction. We will first prove that if (2) holds, then S is path independent. Consider any
C1 and C2 in S that have the same starting point p and ending point q, as shown in Figure 1a. Let
us reverse the direction of C2, and thereby obtain a curve C ′

2 from q to p; see Figure 1b. We will
prove that (∫

C1

f1 dx + f2 dy

)
+

(∫
C′

2

f1 dx + f2 dy

)
= 0 (7)

which indicates that
∫
C1

f1 dx + f2 dy = −
∫
C′

2
f1 dx + f2 dy =

∫
C2

f1 dx + f2 dy, as desired.

We resort to Green’s theorem in proving (7). Consider the closed curve C that concatenates
C1 and C ′

2. Let D be the area enclosed by C. Thus,

(7) =

∫
C
f1 dx + f2 dy

(by Green’s Theorem) =

∫∫
D

∂f2

∂x
− ∂f1

∂y
dxdy

(by (2)) = 0
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Figure 1: Proof of the if-direction of Theorem 1
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Figure 2: Proof of the only-if direction of Theorem 1

as claimed.

The Only-If Direction. Next, we will prove that if S is path independent, then (2) definitely
holds everywhere in R2. Assume, on the contrary that, this was not true at some point p = (x0, y0).
Without loss of generality, suppose that

∂f2

∂x
(x0, y0)− ∂f1

∂y
(x0, y0) > 0.

As both ∂f2
∂x and ∂f1

∂y are continuous, so is ∂f2
∂x −

∂f1
∂y . Hence, we can find a small disc D centered at

p such that

∂f2

∂x
(x′, y′)− ∂f1

∂y
(x′, y′) > 0 (8)

holds for any point (x′, y′) in D; see Figure 2a: Let C be the boundary of D, namely, a circle, in
the counterclockwise direction. Now consider the following line integral:∫

C
f1 dx + f2 dy (9)

which is supposed to be 0 because S is path independent. To see this, choose two distinct points
p′ and q′ on C arbitrarily, and consider the arc C1 from p′ to q′ counterclockwise, and the arc C2

from q′ to p′ counterclockwise; see Figure 2b. S being path independent implies that(∫
C1

f1 dx + f2 dy

)
+

(∫
C2

f1 dx + f2 dy

)
= 0

which directly indicates that (9) = 0.
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Figure 3: Proof of Theorem 2

However, by Green’s Theorem, we have:

(9) =

∫∫
D

∂f2

∂x
− ∂f1

∂y
dxdy

(by (8)) > 0

which gives a contradiction.

B Proof of Theorem 2

We will construct such a function explicitly:

g(x, y) =

∫
C
f1 dx + f2 dy

where C is any piecewise smooth curve from the origin to the point (x, y). Under the condition
(3), Theorem 1 tells us that the value of the integral does not depend on the choice of C. Next, we
will show that g(x, y) satisfies (4). Due to symmetry, we will show only f1(x, y) = ∂g

∂x .

By definition of partial derivative:

∂g

∂x
(x, y) = lim

∆x→0

g(x + ∆x, y)− g(x, y)

∆x

Let p and q denote the points (x, y) and (x + ∆x, y), respectively. Denote by C ′ the horizontal
directed segment from p to q. See Figure 3. Define C ′′ as the arc that concatenates C and C ′. By
definition we have:

g(x + ∆x, y) =

∫
C′′

f1 dx + f2 dy

and hence:

g(x + ∆x, y)− g(x, y) =

(∫
C′′

f1 dx + f2 dy

)
−
(∫

C
f1 dx + f2 dy

)
=

∫
C′

f1 dx + f2 dy

(as y-coordinate does not change on C ′) =

∫
C′

f1 dx

=

∫ x+∆x

x
f1 dx.
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The continuity of ∂f1
∂x implies that f1 is continuous on x. Therefore, the mean value theorem tells

us that there exists a value x′ ∈ [x, x + ∆x] such that the above integral equals f1(x′, y) · ∆x.
Therefore:

lim
∆x→0

g(x + ∆x, y)− g(x, y)

∆x
= lim

∆x→0

f1(x′, y) ·∆x

∆x

= lim
∆x→0

f1(x′, y) = f1(x, y)

which completes the proof.

C Proof of Theorem 3

Suppose that C is an arc on the curve [x(t), y(t)] defined by increasing t from tp to tq, namely,
p = (x(tp), y(tp)) and p = (x(tq), y(tq)). We have∫

C
f1 dx + f2 dy =

∫
C

∂g

∂x
dx +

∫
C

∂g

∂y
dy

=

∫ tq

tp

∂g

∂x

dx

dt
+

∂g

∂y

dy

dt
dt

=

∫ tq

tp

dg

dt
dt

= g(x(t), y(t))
∣∣∣tq
tp

= g(q)− g(p).
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