Lecture Notes: Line Integrals by Coordinate and by Dot Product

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

Line integrals by arc length can be regarded as performing integration using a scalar function along a curve. Today we will discuss a different form of line integrals, which perform integration using a *vector* function along a curve. Next, we will take several steps — in Sections 1, 2, and 3, respectively — to define this form of integrals.

1 Line Integrals by One Coordinate

Let us first introduce a convention. Suppose that $f(x_1, x_2, ..., x_d)$ is a scalar function with realvalued parameters. Given a point $p = (x_1, x_2, ..., x_d)$ in \mathbb{R}^d , we use f(p) as a short form for $f(x_1, x_2, ..., x_d)$.

Definition 1. Let C be a smooth curve in \mathbb{R}^d with a starting point and an ending point. Break C into a sequence of n curves $C_1, C_2, ..., C_n$ such that (i) C_1 has the same starting point as C, (ii) for $j \in [1, n-1]$, the ending point of C_j is the starting point of C_{j+1} , and (iii) C_n has the same ending point as C. Define ℓ to be the maximum length of $C_1, C_2, ..., C_n$. For each $j \in [1, n]$:

- choose an arbitrary point p_j on C_j
- denote by $\Delta_1[j] = x'_1[j] x_1[j]$ where $x_1[j]$ and $x'_1[j]$ are the x_1 -coordinates of the starting and ending points of C_j , respectively.

For a scalar function $f(x_1, x_2, ..., x_d)$, if the following limit exists:

$$\lim_{\ell \to 0} \sum_{j=1}^n f(p_j) \cdot \Delta_1[j]$$

then we define

$$\int_C f(x_1, ..., x_d) \, dx_1$$

to be the above limit.

The figure below illustrates the curve partitioning in the above definition for n = 5 where x_1 refers to the horizontal dimension:

Note that as ℓ tends to 0, n tends to ∞ . We state the next intuitive lemma without proof:

Lemma 1. Suppose that the curve C in Definition 2 is defined by $\mathbf{r}(t) = [x_1(t), x_2(t), ..., x_d(t)]$ with $t \in [t_1, t_2]$. When $f(x_1(t), x_2(t), ..., x_d(t))$ is continuous in $[t_1, t_2]$, it holds that

$$\int_C f(x_1, ..., x_d) \, dx_1 = \int_{t_1}^{t_2} f(x_1(t), ..., x_d(t)) \, \frac{dx_1}{dt} dt.$$

Example 1. Consider the circle $x^2 + y^2 = 1$. Let *C* be the arc from point $q_1 = (\sqrt{3}/2, 1/2)$ counterclockwise to point $q_2 = (1/2, \sqrt{3}/2)$. Calculate $\int_C \frac{1}{y} dx$.

Solution. The circle can be represented with $\mathbf{r}(t) = [x(t), y(t)]$ where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. q_1 and q_2 correspond to $\mathbf{r}(\pi/6)$ and $\mathbf{r}(\pi/3)$, respectively. Hence, we have:

$$\int_{C} \frac{1}{y} dx = \int_{\pi/6}^{\pi/3} \frac{1}{y} \frac{dx}{dt} dt$$

= $\int_{\pi/6}^{\pi/3} \frac{1}{\sin(t)} \cdot (-\sin(t)) dt$
= $\int_{\pi/6}^{\pi/3} -1 dt = -\pi/6.$

Definition 2 requires that C should be smooth. Suppose that C is not a smooth curve, but can be broken into a *finite* number of smooth curves $C_1, C_2, ..., C_k$ (for some k). We say that C is *piecewise smooth*. For such a curve C, we define

$$\int_C f(x_1, ..., x_d) \, dx_1 = \sum_{i=1}^k \int_{C_i} f(x_1(t), ..., x_d(t)) \, dx_1.$$

For example, in the figure below, let curve C be the concatenation of C_1, C_2 and C_3 . C is not smooth, but is piecewise smooth.

Although the statement of Definition 2 is about coordinate x_1 , we can define $\int_C f(x_1, ..., x_d) dx_i$ for any coordinate x_i with $i \in [1, d]$ in the same manner.

2 Line Integrals by All Coordinates

Suppose that we are given d scalar functions $f_1(x_1, ..., x_d), f_2(x_1, ..., x_d), ..., f_d(x_1, ..., x_d)$. Let C be a smooth curve in \mathbb{R}^d from point p to point q. Also, let $\mathbf{r}(t) = [x_1(t), x_2(t), ..., x_d(t)]$ be a parametric form of C, such that p and q are given by $t = t_p$ and $t = t_q$, respectively.

From our earlier discussion, when all of $f_1(x_1(t), ..., x_d(t)), f_2(x_1(t), ..., x_d(t)), ..., f_d(x_1(t), ..., x_d(t))$ are continuous in $[t_p, t_q]$, it holds that

$$\int_{C} f_{1}(x_{1},...,x_{d}) dx_{1} + \int_{C} f_{2}(x_{2},...,x_{d}) dx_{2} + ... + \int_{C} f_{d}(x_{d},...,x_{d}) dx_{d}$$

$$= \int_{t_{p}}^{t_{q}} \left(f_{1}(x_{1}(t),...,x_{d}(t)) \frac{dx_{1}}{dt} + f_{2}(x_{1}(t),...,x_{d}(t)) \frac{dx_{2}}{dt} + ... + f_{d}(x_{1}(t),...,x_{d}(t)) \frac{dx_{d}}{dt} \right) dt.$$
(1)

Example 2. Consider the circle $x^2 + y^2 = 1$. Let C be the arc from $q_1 = (\sqrt{3}/2, 1/2)$ counterclockwise to point $q_2 = (1/2, \sqrt{3}/2)$. Calculate

$$\int_C \frac{1}{y} \, dx + \int_C \frac{y}{x} \, dy.$$

Solution. The circle can be represented with $\mathbf{r}(t) = [x(t), y(t)]$ where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Points p and q correspond to $\mathbf{r}(\pi/6)$ and $\mathbf{r}(\pi/3)$, respectively. Hence, we have:

$$\begin{split} \int_C \frac{1}{y} \, dx + \int_C \frac{y}{x} \, dy &= \int_{\pi/6}^{\pi/3} \frac{1}{y} \frac{dx}{dt} dt + \int_{\pi/6}^{\pi/3} \frac{y}{x} \frac{dy}{dt} dt \\ &= \int_{\pi/6}^{\pi/3} \frac{1}{\sin(t)} \cdot (-\sin(t)) \, dt + \int_{\pi/6}^{\pi/3} \frac{\sin(t)}{\cos(t)} \cdot \cos(t) \, dt \\ &= \int_{\pi/6}^{\pi/3} -1 \, dt + \int_{\pi/6}^{\pi/3} \sin(t) dt \\ &= -\frac{\pi}{6} + \frac{\sqrt{3} - 1}{2}. \end{split}$$

3 Line Integrals by Dot Product

We are ready to define how to perform integration along a curve using a vector function. For this purpose, let us introduce another convention. Suppose that $f(x_1, x_2, ..., x_d)$ is a scalar function with real-valued parameters. Given a point $p = (x_1, x_2, ..., x_d)$ in \mathbb{R}^d , we use f(p) as a short form for $f(x_1, x_2, ..., x_d)$.

Definition 2. Let:

- $f(x_1, ..., x_d)$ be a vector function whose output is a d-dimensional vector
- $\mathbf{r}(t)$ be a smooth d-dimensional curve, and
- C be an arc on the curve with a starting point and an ending point.

Break C into a sequence of n curves $C_1, C_2, ..., C_n$ such that (i) C_1 has the same starting point as C, (ii) for $j \in [1, n-1]$, the ending point of C_j is the starting point of C_{j+1} , and (iii) C_n has the same ending point as C. Define ℓ to be the maximum length of $C_1, C_2, ..., C_n$. For each $j \in [1, n]$:

- choose an arbitrary point p_j on C_j
- denote by $\Delta[j]$ be the vector defined by the directed segment pointing from the starting point of C_j to the ending point of C_j .

If the following limit exists:

$$\lim_{\ell \to 0} \sum_{j=1}^{n} \boldsymbol{f}(p_j) \cdot \boldsymbol{\Delta}[j]$$

then we define

$$\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d\boldsymbol{r} \tag{2}$$

to be the above limit.

Although the above definition may look a bit complicated, it is essentially the same as line integrals by "all coordinates". To see this, write out the components of $f(x_1, ..., x_d)$ and $\Delta[j]$ as:

$$\begin{aligned} \boldsymbol{f}(x_1,...,x_d) &= [f_1(x_1,...,x_d),...,f_d(x_1,...,x_d)] \\ \boldsymbol{\Delta}[j] &= [\Delta_1[j],...,\Delta_d[j]]. \end{aligned}$$

Then:

$$\begin{split} \int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d\boldsymbol{r} &= \lim_{\ell \to 0} \sum_{j=1}^{n} \boldsymbol{f}(p_{j}) \cdot \boldsymbol{\Delta}[j] \\ &= \lim_{\ell \to 0} \sum_{j=1}^{n} \left(f_{1}(p_{j}) \cdot \boldsymbol{\Delta}_{1}[j] + \ldots + f_{d}(p_{j}) \cdot \boldsymbol{\Delta}_{d}[j] \right) \\ &= \left(\lim_{\ell \to 0} \sum_{j=1}^{n} f_{1}(p_{j}) \cdot \boldsymbol{\Delta}_{1}[j] \right) + \ldots + \left(\lim_{\ell \to 0} \sum_{j=1}^{n} f_{d}(p_{j}) \cdot \boldsymbol{\Delta}_{d}[j] \right) \\ &= \int_{C} f_{1}(x_{1}, \ldots, x_{d}) \, dx_{1} + \int_{C} f_{2}(x_{1}, \ldots, x_{d}) \, dx_{2} + \ldots + \int_{C} f_{d}(x_{1}, \ldots, x_{d}) \, dx_{d} \end{split}$$

Example 3. Define:

$$\boldsymbol{f}(x,y) = \left[\frac{1}{y}, \frac{y}{x}\right].$$

Define a curve:

$$\boldsymbol{r}(t) = [\cos t, \sin t].$$

Let C be the arc on the above curve defined by increasing t from $\pi/6$ to $\pi/3$. Calculate $\int_C f(\mathbf{r}) \cdot d\mathbf{r}$.

Solution. From the earlier discussion we know that

$$\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d\boldsymbol{r} = \int_{C} \frac{1}{y} dx + \int_{C} \frac{y}{x} dy$$
$$= \int_{\pi/6}^{\pi/3} \left(\frac{1}{y} \frac{dx}{dt} + \frac{y}{x} \frac{dy}{dt}\right) dt$$

The rest of the derivation is the same as that in Example 2.

The above example actually illustrates the following transformation:

$$\begin{aligned} \int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d\boldsymbol{r} &= \int_{C} f_{1}(x_{1}, ..., x_{d}) \, dx_{1} + ... + \int_{C} f_{d}(x_{1}, ..., x_{d}) \, dx_{d} \\ &= \int_{C} \left(f_{1}(x_{1}, ..., x_{d}) \, \frac{dx_{1}}{dt} + ... + f_{d}(x_{1}, ..., x_{d}) \, \frac{dx_{d}}{dt} \right) dt \\ &= \int_{C} \left[f_{1}(x_{1}, ..., x_{d}), ..., f_{d}(x_{1}, ..., x_{d}) \right] \cdot \left[\frac{dx_{1}}{dt}, ..., \frac{dx_{d}}{dt} \right] dt \\ &= \int_{C} \boldsymbol{f}(x_{1}(t), ..., x_{d}(t)) \cdot \boldsymbol{r}'(t) \, dt. \end{aligned}$$

The above equation provides a neater way to calculate $\int_C f(\mathbf{r}) \cdot d\mathbf{r}$, as shown in the example below.

Example 4. Let us re-calculate the line integral in Example 3:

$$\begin{split} \int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d\boldsymbol{r} &= \int_{\pi/6}^{\pi/3} \boldsymbol{f}(x(t), y(t)) \cdot \boldsymbol{r}'(t) \, dt \\ &= \int_{\pi/6}^{\pi/3} \left[\frac{1}{\sin(t)}, \frac{\sin(t)}{\cos(t)} \right] \cdot \left[-\sin(t), \cos(t) \right] \, dt \\ &= \int_{\pi/6}^{\pi/3} -1 + \sin(t) \, dt \\ &= -\frac{\pi}{6} + \frac{\sqrt{3} - 1}{2}. \end{split}$$