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In general, a curve C' has a starting point p and an ending point g. However, it is possible that
p = ¢, i.e., the starting point coincides with the ending point, in which case C' is a closed curve.
In this lecture, we will see a beautiful relationship between 2D line integrals on closed curves and
double integrals.

1 Monotone Regions

Let C be a piecewise-smooth closed curve in R?, and D be the region that is enclosed by C. We
say that D is monotone if it satisfies both of the following conditions:

e any vertical line intersects C' into two points, unless the line passes the leftmost or rightmost
point of C}

e any horizontal line intersects C' into two points, unless the line passes the top-most or bottom-
most point of C'.
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Suppose that D is monotone. We designate the positive direction of C as the counterclockwise
direction. Choose an arbitrary point p on C, and denote the same point p also as q. We can view
C instead as a curve obtained by walking from p counterclockwise along the boundary of D until
hitting q.

We will now prove the first version of the Green’s Theorem:

Theorem 1 (Green’s Theorem). Let fi(z,y) and fo(x,y) be scalar functions such that %—];1 and
% are continuous in D. Then:
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Proof. We will first prove that
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Let a (and b) be the minimum (and maximum, resp.) x-coordinate of the points on C. Any
monotone D can be regarded as the region between two curves: y = ¢1(x) and y = ¢2(x), for the
range x € [a,b]. Without loss of generality, let y = ¢;(x) be the lower curve, and y = ¢2(z) the
upper curve, as shown as the blue curves below:
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We break C' into a sequence of C1,Co,C3 and Cy. Note that Cy and Cy are vertical segments
(shown above in red). Therefore:
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By repeating the above argument with respect to the y-dimension, we get
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Putting together (2) and (3) proves (1). O

On the other hand:

which establishes (2).

As a special case, setting fi(z,y) = —y and fa(x,y) = x, we obtain from (1):

/C(—ydx—i-xdy) = 2//Ddxdy. (4)
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Note that the right hand side of the above is twice the area of D.

Example 1. Calculate the area of the ellipse i—j + z—j =1.

Solution. Let C be the ellipse’s boundary, and D the ellipse itself. We know from (4) that

1

area(D) = 2/0(—ydx—|—xdy).

Introduce z(t) = acost and y(t) = bsint. We have from the above that

1 [* d d
area(D) = 2/0 —bsin(t)d—f + acos(t)d—gz dt.
1
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= abm.

27
= = / absin®(t) + abcos®(t) dt.
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It may be interesting for you to evaluate [[ p dzrdy directly without converting it to a line integral,
and compare the amount calculation of the two solutions. O

Example 2. Let D be the square [—1,1] x [—1, 1] (namely, x-projection [—1,1] and y-projection
[—1,1]). Let C be the boundary of D in the positive direction. Calculate [, 6y*dx + 22 — 2y* dy.

Solution. Let fi(z,y) = 6y® and fa(z,y) = 2 — 2y*. By Theorem 1, we have:

/ (6y% dx + 2z — 2y dy) = // 2 — 12y dxdy
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Remark. Notice from the above examples that in a line integral with a closed curve C we do not
specify where C' starts and ends explicitly. The reason is clear from Theorem 1: it does not matter!

You can break C' at any point p, and treat it as a curve that starts from p, goes a round, and then
ends at p. The line integral is always the same regardless of your choice.

2 Green’s Theorem for Non-Monotone Regions
Next, we extend Theorem 1 to any closed region D whose boundary is a piecewise-smooth curve.

Regions without Holes. Let D be a (possibly non-monotone) region enclosed by a closed
piecewise-smooth curve C. As before, we designate the positive direction of C as the counter-
clockwise direction.



Theorem 2. Theorem 1 still holds even if C is not monotone.
We will not prove the theorem formally, but we can gain the key idea from the example below.

The leftmost figure is a non-monotone region D enclosed by curve C. Let us break it with two
dashed line segments into 4 regions D1, Do, D3, and Dy, each of which is monotone.
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Let C1,Co, ...,C4 be the boundary curves of Dy, Do, ..., Dy, respectively. Applying Theorem 1 on
each curve, we get:
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Interestingly, the left hand side equals |, o (fidz + fady)! Notice that every dashed line is integrated
exactly twice with opposite directions!

Regions with Holes. Now consider D to be any connected region, i.e., namely, we can move from
a point in D to any other point in D without leaving D. Note that D may contain “holes”; for
example, see the figure below. We define the boundary of D as the set of points p in D such that,
any circle centered at p with an arbitrarily small radius must contain some points not belonging to
D. In the figure below, the boundary of D consists of two curves C; and Cj.
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Consider, in general, that the boundary C of D is a set of closed piecewise smooth curves
C1,Co, ..., Cy, for some finite value k (e.g., &k = 2 in the above figure). For each C; (1 < i < k),
we define its positive direction as follows: if we walk along that direction, then D is on our left
hand side at all times. In the above example, the positive direction of C] is the counterclockwise
direction, while that of C is the clockwise direction.

We now present the Green’s theorem in its most general form:

Theorem 3. Theorem 1 still holds on the connected region D and its boundary C defined as above.



Again, we omit a formal proof of the theorem, but illustrate the key idea using an example.
Consider the region D demonstrated earlier. We can cut it into two regions, neither of which has
a hole as shown below:
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Let C7, CY be the boundaries of D; and D, respectively. We know
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The left hand side equals [, (f1dx + f2dy), noticing that every dashed line is integrated exactly
twice with opposite directions.

Example 3. Let C; be the circle 22 + y? = 10, and Cy be the circle 22 + 4% = 5. Let D be the
region between the two circles (i.e., the shaded area in the figure below). Let C' = {C1,C2} be the
boundary of D with C1,C5 in the positive direction.

It is clear that area(D) = 10m — 57 = 5m. Next, we will calculate the area(D) by line integral.
According to Theorem 3, we have:

area(D)://D dody — ;/C(—ydxﬂdy)
= ;(/Cl(—yda;—i-xdy)—i—/@(—ydw—i—xdy)). (5)



Represent C; in the parametric form [v/10 cos(u), v/10sin(u)]. Then:
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d
/ (—ydr+azdy) = —Vv10 sin(u)—x + V10 cos(u)@ du
o) 0 du du

= /%(—\/ﬁsim(u))2 + (V10 cos(u))? du
0
= 20m.

Represent Cy in the parametric form [v/5 cos(v), v/5sin(v)]. Then:

0 . dx dy
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= —10m.

Therefore, (5) evaluates to £(20m — 107) = 5.



