Lecture Notes: Arc Lengths

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Definition of Arc Lengths

Recall that a curve in \mathbb{R}^d can be represented as a vector function $\mathbf{r}(t) = [x_1(t), x_2(t), ..., x_d(t)]$, where $x_1(t), x_2(t), ..., x_d(t)$ give the coordinates of the point on the curve corresponding to a value of t. If we take a continuous portion of the curve, we get an *arc*, which is formally defined as:

Definition 1. Given a curve $\mathbf{r}(t)$, an **arc** of the curve is $\{\mathbf{r}(t) \mid t_0 \leq t \leq t_1\}$ where t_0 and t_1 are real values.

It is worth mentioning that the arc as defined above is sometimes also referred to as "the curve from t_0 to t_1 " or as "the curve from point $\mathbf{r}(t_0)$ to point $\mathbf{r}(t_1)$ ". In the example below, the curve/arc from t_0 to t_1 is the part of the curve between p and q.

Intuitively, an arc should have a "length", which we formalize below as a limit:

Definition 2. Let C be an arc given by $\mathbf{r}(t)$ with t ranging from t_0 to t_1 . Evenly divide the interval $[t_0, t_1]$ by inserting n + 1 break points $\tau_0, \tau_1, \tau_2, ..., \tau_n$ where $\tau_0 = t_0$ and $\tau_i - \tau_{i-1} = (t_1 - t_0)/n$ for each $i \in [1, n]$. Define σ_i to be the straight line segment connecting the points $\mathbf{r}(\tau_{i-1})$ and $\mathbf{r}(\tau_i)$, and denote by $|\sigma_i|$ the length of σ_i . Then, if the following limit exists:

$$\lim_{n \to \infty} \sum_{i=1}^{n} |\sigma_i| \tag{1}$$

we say that the limit is the length of C.

The figure above shows an example with n = 5. Note how we approximate the length of the curve by the total length of a sequence of segments.

In this course, we will be interested mainly in *smooth curves*. Intuitively, these are curves that (i) do not degenerate into a point, and (ii) do not have "corners" (e.g., the boundary of a triangle is not smooth). Mathematically, we formalize the notion as follows:

Definition 3. Let C be a curve given by $\mathbf{r}(t)$ with t ranging from t_0 to t_1 . C is smooth if (i) $\mathbf{r}'(t)$ is continuous in $[t_0, t_1]$, and (ii) $\mathbf{r}'(t) \neq \mathbf{0}$ at any $t \in [t_0, t_1]$.

We will state without proof the following lemma:

Lemma 1. Let C be as described in Definition 2. If C is smooth, then the limit (1) always exists.

2 Computing Arc Lengths

Consider a curve given by the vector function $\mathbf{r}(t)$. Fix a real value t_0 , and consider the arc C from t_0 to t. Note that C extends as t grows, which means that the length s of C is a function of t.

The following is an important lemma:

Lemma 2. If C is smooth, then it holds that:

$$\frac{d(s(t))}{dt} = \sqrt{\sum_{i=1}^d \left(\frac{d(x_i(t))}{dt}\right)^2}.$$

We will not present a complete proof of the lemma, but the following discussion will point out the main ideas. Consider the figure below in 2d space. Imagine that we increase t by a tiny amount Δt . By doing so, we have traveled on the curve a little from point p to point q. Δx_1 and Δx_2 give the coordinate differences of p and q on the two dimensions, respectively. When Δt is extremely small, the length Δs of the curve from p to q should be very close to the length of the segment connecting p and q, that is, $\Delta s \approx \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2}$, which gives $\frac{\Delta s}{\Delta t} \approx \sqrt{(\frac{\Delta x_1}{\Delta t})^2 + (\frac{\Delta x_2}{\Delta t})^2}$.

Now fix another real value $t_1 \ge t_0$. Denote by L the length of the arc from t_0 to t_1 . We can calculate L as follows:

$$L = \int_0^L ds$$

= $\int_{t_0}^{t_1} \frac{ds}{dt} dt$
= $\int_{t_0}^{t_1} \sqrt{\sum_{i=1}^d \left(\frac{d(x_i(t))}{dt}\right)^2} dt$

Example 1. Consider the circle $x^2 + y^2 = 1$. Let p be the point (1,0) and q the point (-1,0). Let C be the arc of the circle from p to q. How to calculate the length of C?

First of all, we need to represent the circle using a single parameter. One way of doing so is to define:

$$\begin{aligned} x(t) &= \cos(t) \\ y(t) &= \sin(t). \end{aligned}$$

Then C is essentially the curve from t = 0 (point p) to $t = \pi$ (point q). Hence, the length of C is given by:

$$\int_0^\pi \frac{ds}{dt} dt = \int_0^\pi \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_0^\pi \sqrt{(-\sin(t))^2 + (\cos(t))^2} dt$$
$$= \int_0^\pi 1 dt = \pi.$$

Example 2. Consider the helix $\mathbf{r}(t) = [x(t), y(t), z(t)]$ where

$$\begin{aligned} x(t) &= \cos(t) \\ y(t) &= \sin(t) \\ z(t) &= t. \end{aligned}$$

The length of the arc from t = 0 to $t = \pi$ is:

$$\int_0^\pi \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt = \int_0^\pi \sqrt{(-\sin(t))^2 + (\cos(t))^2 + 1^2} dt$$
$$= \sqrt{2} \int_0^\pi dt$$
$$= \sqrt{2}\pi.$$