
Exercises: Dimensions, Spans, and Linear Transformations

In the following exercises, R denotes the set of all real numbers.

Problem 1. Let V be the set of following 1× 4 vectors:

[3, 0, 1, 2]

[6, 1, 0, 0]

[12, 1, 2, 4]

[6, 0, 2, 4]

[9, 0, 1, 2]

Find the dimension of V .

Solution. Since the matrix 
3 0 1 2
6 1 0 0
12 1 2 4
6 0 2 4
9 0 1 2


has rank 2 (see the exercise list on “Matrix Rank”), the dimension of V is 2.

Problem 2. Let V be the set of 1 × 4 vectors [2x − 3y, x + 2y,−y, 4x] with x, y ∈ R. Find the
dimension of V and give a basis of V .

Solution. Denote by V ′ the set of 1×2 vectors [x, y] with x, y ∈ R. V is obtained from V ′ through
a linear transformation. Clearly the dimension of V ′ is 2 (here is a basis for V ′: {[1, 0], [0, 1]}).
Thus, the dimension of V is at most 2. To prove that the dimension of V is exactly 2, it suffices to
find two vectors in V that are linearly independent. The following are two such vectors: [2, 1, 0, 4]
(given by x = 1, y = 0) and [−3, 2,−1, 0] (given by x = 0, y = 1). They also form a basis of V .

Problem 3. For each set V of vectors given below, find its dimension and give a basis:

• (a) V is the set of 2D points given by y = x (here, we regard each point (x, y) as a 1 × 2
vector [x, y]);

• (b) V is the set of 2D points given by y = x + 1.

Solution. (a) Dimension 1. A basis: {[1, 1]}.
(b) Dimension 2. A basis: {[0, 1], [−1, 0]}.

Problem 4. Let V1 be the set of vectors [x1, x2]
T where x1 ∈ R and x2 ∈ R. Define:

y1 = 3x1 + 2x2

y2 = 4x1 + x2

Let V2 be the set of vectors [y1, y2]
T obtained by applying the above to all vectors [x1, x2]

T ∈ V1.
Answer the following questions:
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(a) Give the matrix A in the linear transformation [y1, y2]
T = A[x1, x2]

T from V1 to V2.

(b) It is known that there is a linear transformation [x1, x2]
T = A′[y1, y2]

T from V2 to V1. Give
the details of the matrix A′.

Solution. (a) The transformation can be written as:[
y1
y2

]
=

[
3 2
4 1

] [
x1
x2

]

(b) The matrix A =

[
3 2
4 1

]
has rank 2. Hence, it has an inverse A−1. Observe that:

[
y1
y2

]
= A

[
x1
x2

]
leads to

A−1
[

y1
y2

]
=

[
x1
x2

]

By applying Gauss-Jordan elimination, we can get A−1 =

[
−1/5 2/5
4/5 −3/5

]
. Therefore:

[
x1
x2

]
=

[
−1/5 2/5
4/5 −3/5

] [
y1
y2

]
.

Problem 5. Let V be a set of 1 × n vectors. Let V ′ be the projection of V on the first t < n
components, namely:

V ′ =
{

[x1, x2, ..., xt]
∣∣ [x1, x2, ..., xt, xt+1, ..., xn] ∈ V

}
.

Prove: the dimension of V is at least the dimension of V ′.

For example, if V is the set of 5 vectors in Problem 1 and t = 2, then V ′ is the set of following
vectors:

[3, 0]

[6, 1]

[12, 1]

[6, 0]

[9, 0].

Solution. For a row vector v, we will denote by v[i] the i-th element of v. Let d′ be the dimension
of V ′. This means that we can find d′ 1× t vectors v′

1, ...,v
′
t in V ′ that are linearly independent.

Remember that each v′
i must come from a vector vi ∈ V , for 1 ≤ i ≤ t. The vectors v1, ...,vd′

must be linearly independent. Otherwise, suppose

c1 · v1 + ... + cd′ · vd′ = 0
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for some real numbers c1, ..., cd′ that are not all 0. Then it must hold that

c′1 · v′
1 + ... + cd′ · v′

d′ = 0

contradicting the fact that v′
1, ...,v

′
t are linearly independent.

Problem 6 (Hard). Consider the following system of linear equations:
1 0 0 1 1
0 1 0 0 1
0 0 1 0 1
1 1 0 1 2
0 1 1 0 2




x1
x2
x3
x4
x5

 =


0
0
0
0
0

 .

Let V be the set of 5× 1 vectors


x1
x2
x3
x4
x5

 that satisfy the equation. Prove that V has dimension 2,

and find a basis of V .

Solution. The system can be transformed into:
1 0 0 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0




x1
x2
x3
x4
x5

 =


0
0
0
0
0

 .

It follows that we can derive all the solutions


x1
x2
x3
x4
x5

 as follows. First, set x4, x5 to any real

numbers (i.e., they are unconstrained). Then, solve x1, x2, x3 as:

x1 = −(x4 + x5)

x2 = −x5
x3 = −x5. (1)

Denote by V ′ the set of all vectors

[
x4
x5

]
. It is clear that V ′ has dimension 2 (remember: x4, x5

are unconstrained). V can be obtained from V ′ through a linear transformation. Therefore, the
dimension of V is at most the dimension of V ′. In other words, the dimension of V is at most 2.

On the other hand, note that V ′ is the projection of V onto the 4-th and 5-th components.
From the result of Problem 4, we know that the dimension of V is at least the dimension of V ′. In
other words, the dimension of V is at least 2.

We now conclude that the dimension of V is precisely 2.
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To find a basis of V , simply set

[
x4
x5

]
to

[
1
0

]
and

[
0
1

]
, respectively. The former gives

x1
x2
x3
x4
x5

 =


−1
0
0
1
0

 and the latter gives


x1
x2
x3
x4
x5

 =


−1
−1
−1
0
1

.

Problem 7 (Hard). Consider the following linear system about x

Ax = 0

where A is an m × n coefficient matrix, and x an n × 1 matrix. Let V be the set of all such x
satisfying the system. Suppose that the rank of A is r < n. Prove that V has dimension n− r.

Solution. Let B be a row echelon form of A. We know that B has exactly r non-zero rows.

The solutions x =


x1
x2
...
xn

 of the system can be obtained as follows. First, fix


xr+1

xr+2

...
xn

 to an

arbitrary (n − r) × 1 vector. Then, the r non-zero rows of B give a linear system with respect to
x1, x2, ..., xr (treating xr+1, xr+2, ..., xr as constants). This linear system has a unique solution.

Therefore, V is the set of all outputs of a linear function f(xr+1, xr+2, ..., xn) where (i) each
output of f is an n-dimensional vector v, and (ii) xr+1, xr+2, ..., xn can be arbitrary real values. In
other words, f is in fact a linear transformation from the set of all possible (n− r)× 1 vectors to
V . It thus follows that the dimension of V is at most n− r.

On the other hand, since the projection of V onto the components xr+1, ..., xn is the set of all
possible (n− r)× 1 vectors. It follows from the result of Problem 4 that V has dimension at least
n− r.

We now conclude that the dimension of V is exactly n− r.
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