Exercises: Similarity Transformation

Problem 1. Diagonalize the following matrix:

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$

Problem 2. Consider again the matrix A in Problem 5. Calculate A^t for any integer $t \ge 1$.

Problem 3. Diagonalize the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Problem 4. Suppose that matrices A and B are similar to each other, namely, there exists P such that $A = P^{-1}BP$. Prove: if x is an eigenvector of A under eigenvalue λ , then Px is an eigenvector of B under eigenvalue λ .

Problem 5. Suppose that an $n \times n$ matrix \boldsymbol{A} has n linearly independent eigenvectors $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$. Prove: for any $n \times 1$ vector $\boldsymbol{x}, \boldsymbol{A}\boldsymbol{x}$ is a linear combination of $\boldsymbol{v}_1, \boldsymbol{v}_2, ..., \boldsymbol{v}_n$.

Problem 6. Prove or disprove: if an $n \times n$ matrix A has rank n, then it must have n independent eigenvectors.

Problem 7. Prove that $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is not diagonalizable.

Problem 8. Let A, B, and C be three $n \times n$ matrices for some integer n. Prove that if A is similar to B and B is similar to C, then A is similar to C.

Problem 9. Decide whether

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$$

is similar to

$$\boldsymbol{B} = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}.$$