Exercises: Linear Systems and Matrix Inverse

Problem 1. Consider the following linear system:

1+ X2+ T3+ 24 =
3r1 + w2 + X3 + 14 =
To + 223 + 224 =
5x1 +4xo + 3x3 +3x4 =

QL W =

Depending on the value of a, when does the system have no solution, a unique solution, and
infinitely many solutions?

Solution. Consider the augmented matrix A:
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B = = =
W N =
W N = =
QW e

Note that the part ofNA to the left of the vertical bar is the coefficient matrix A. We will discuss
the ranks of A and A. For this purpose, we apply elementary row operations to convert A into
row echelon form:

1 1 1 1] 1
- 0 -2 -2 -2|a-3
A= g 1 9 9 3
0 -1 -2 —2|a-5
101 1 1] 107
o1 e
0 -2 -2 -2|a-3
0 -1 -2 —2|a-5
10101 1] 1
o122 s
00 2 2|a+3
(000 0 0]a—2

Now we can analyze the solutions of the linear system:
o If a # 2, then rank A = 4 whereas rank A = 3. In this case, the system has no solution.

e If a = 2, then rank A = rank A = 3, which is smaller than the number 4 of variables. Hence,
the system has infinitely many solutions.

It is worth mentioning that, regardless of the value of a, the linear system never has a unique
solution.

Problem 2. Consider the following linear system:

201 +x9+brs = 0
r1+x9+brs = 0
bri+xo+2x3 = 0



Depending on the value of b, when does the system have no solution, a unique solution, and infinitely
many solutions?

Solution. Consider the augmented matrix A:
. 2 1 b
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Again, the part of A to the left of the vertical bar is the coefficient matrix A.
If b =0, then
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Hence, the system has a unique solution.
Next we consider that b # 0.

. b 1 210

A = 2 1 b0
| 1 1 b0
b 1 2 0

= b b/2 b2/2 |0

b b b2 |0

(Note that we multiplied the 2nd row by b/2, and the 3rd one by b.
These are elementary row operations because b # 0.)
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= 0 b/2—-1 v*/2-210

0 b-—1 -2 |0

b1 2 |0

= [0 b—2 b*—4]|0 (1)
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If b = 2, then
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Hence, the system has infinitely many solutions.



If, on the other hand, b = 1, then

11 2|0
(H)=10 1 3|0
0 0 1]0
Hence, the system has a unique solution.
Next, we consider that b #£ 0,1, 2. In this case:
[ b 1 2 0
(1) = 0 1 b+2 |0
0 b—1 »*—2]0
[ b 1 2 0
= 0 b—1 (b+2)b—-1)|0
0 b-1 b —2 0
[ b 1 2 0
= 0 b—1 b*+b—-210
0 b—1 bv*-2 |0
[ b 1 2 0]
= |0 b—1 b¥+b-2|0
| 0 0 —b 0

Clearly, (as b # 0) the above matrix has rank 3; therefore, the linear system has a unique solution.

In summary, when b = 2, the original linear system has infinitely many solutions. For any other
value of b, the system has a unique solution.

Problem 3. Use Cramer’s rule to solve the following linear system:

20 —4y = -—24
or +2y = 0

Solution. The coefficient matrix equals

Since det(A) = 24 # 0, the system has a unique solution. Define:

—24 4 2 —24
Al_[ 0 2 ]’A2_[5 0 ]

By Cramer’s rule, we have:

det(Al) —48
= — = -9
v det(A) ~ 24
. det(Ag) . % .
YT Tdet(A) T 24



Problem 4. Compute the inverse of

Solution. We apply Gauss-Jordan elimination. Specifically, we start with

10 0|1 0 0
00 1[0 1 0 (2)
01 0[0 0 1

and convert the left hand side of the vertical bar into an identity matrix using elementary row
operations.

2) =

S O =

0 0j1 0 O
1 00 0 1
0 1|]0 1 O

Now, what remains on the right hand side of the bar is the inverse of A, namely:

1 0 0
Al = 0 0 1
01 0

Remark: Note that A = A~!'. In other words, A = A~! does not imply that A is an identity
matrix.

Problem 5. Use the “inverse formula” to calculate the inverse of the matrix in Problem 4.

Solution. We have: det(A) = —1. Also:

My, = (1) (1) , and thus Ci1 = —1
0 1]
M12 = 0 0_,&11(31012:0
0 0]
M13 = 0 1_,and013:0
0 0]
M21 = _1 0_,&11(?1021:0
1o
MQQ = 0 0-,and022—0
Moz = (1) (1) , and Ch3 = —1 (the minus sign is from (—1)>*3)
0 0]
M31 = 0 1_,and031:0
Mz = (1) (1) , and C3y = —1 (the minus sign is from (—1)3+2)
1 0]
M33 = _0 0_,and033—0



Therefore, we have:

) 1 Cnn Ca O3
A = Cia Ca Cs
det(A
et(4) Ciz3 (o Cs3 |
-1 0 0 1 0 0
= (-1) 0 0 -1 {=]0 01
0 -1 0 | 0 1 0
Problem 6. Compute the inverse of
1 2 1
A = -2 -3 1
5 9 1
Solution. We apply Gauss-Jordan elimination:
[ 1 2 111 0 0
A = -2 =3 1/0 1 0
) 9 1|/0 0 1
[ 1 1 1 0 0
= 0 1 3 2 1 0
0 -1 —4|-5 0 1
[1 2 1|1 0 0]
= 0 1 3 2 1 0
| 0 0 11-3 1 1 |
1 2 1|1 0 0 ]
= 0 1 3 1 0
| 00 1|3 -1 -1 |
1 2 0] -2 1 1 1 0 0|12 -7 -5
= 0 1 0|-7 4 3 =0 1 0|-7 4 3
| 00 1|3 -1 -1 00 1|3 -1 -1

Now, what remains on the right hand side of the bar is the inverse of A, namely:

12 -7 =5
Al = -7 4 3
3 -1 -1

Problem 7. Let A be an n x n matrix. Also, let I be the n x n identity matrix. Prove: if A3 =0,
then

(I-A)"' = I+A+A%

Proof.

(I-A)I+A+A)=T"-A+A-A2+ A2 _A3=1



which completes the proof.

Problem 8. Consider:

Under what values of b does A~! exist?

Solution. We know that A~ exists if and only if det(A) # 0.

2 1 b
det(A) = |1 1 b
b 1 2
1 b 1 b 11
SRR PRI
= 2(2-0)—(2—b%) +b(1—b)
= 2-b.

Therefore, A~! exists if and only if b # 2.



