Exercises: Eigenvalues and Eigenvectors

Problem 1. Find all the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Problem 2. Let A be an $n \times n$ square matrix. Prove: A and A^T have exactly the same eigenvalues.

Problem 3 (Hard). Let A be an $n \times n$ square matrix. Prove: A^{-1} exists if and only if 0 is not an eigenvalue of A.

Problem 4. Let A be an $n \times n$ square matrix such that A^{-1} exists. Prove: if λ is an eigenvalue of A, then $1/\lambda$ is an eigenvalue of A^{-1} .

Problem 5. Prove: if $A^2 = I$, then the eigenvalues of A must be 1 or -1.

Problem 6. Suppose that λ_1 and λ_2 are two distinct eigenvalues of matrix \boldsymbol{A} . Furthermore, suppose that \boldsymbol{x}_1 is an eigenvector of \boldsymbol{A} under λ_1 , and that \boldsymbol{x}_2 is an eigenvector of \boldsymbol{A} under λ_2 . Prove: there does not exist any real number c such that $c\boldsymbol{x}_1 = \boldsymbol{x}_2$.

Problem 7. Suppose that λ_1 and λ_2 are two distinct eigenvalues of matrix A. Furthermore, suppose that x_1 is an eigenvector of A under λ_1 , and that x_2 is an eigenvector of A under λ_2 . Prove: $x_1 + x_2$ is not an eigenvector of A.