
Exercises: Eigenvalues and Eigenvectors

Problem 1. Find all the eigenvalues and eigenvectors of A =

 0 0 1
0 1 0
1 0 0

.

Solution. Let λ be an eigenvalue of A. To obtain all possible λ, we solve the characteristic
equation of A (let I be the 3× 3 identity matrix):

det(A− λI) = 0 ⇒∣∣∣∣∣∣
−λ 0 1
0 1− λ 0
1 0 −λ

∣∣∣∣∣∣ = 0 ⇒

(λ− 1)2(λ+ 1) = 0

Hence, A has eigenvalues λ1 = 1 and λ2 = −1.

To find all the eigenvectors of λ1 = 1, we need to solve x =

 x1
x2
x3

 from:

(A− λ1I)x = 0 ⇒ −1 0 1
0 0 0
1 0 −1

 x1
x2
x3

 =

 0
0
0


The set of solutions to the above equation—EigenSpace(λ1)—includes all

 x1
x2
x3

 satisfying

x1 = u

x2 = v

x3 = u

for any u, v ∈ R. Any non-zero vector in EigenSpace(λ1) is an eigenvector of A corresponding to
λ1.

Similarly, to find all the eigenvectors of λ2 = −1, we need to solve x =

 x1
x2
x3

 from:

(A− λ2I)x = 0 ⇒ 1 0 1
0 2 0
1 0 1

 x1
x2
x3

 =

 0
0
0


The set of solutions to the above equation—EigenSpace(λ2)—includes all

 x1
x2
x3

 satisfying

x1 = u

x2 = 0

x3 = −u
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for any u ∈ R. Any non-zero vector in EigenSpace(λ2) is an eigenvector of A corresponding to λ2.

Problem 2. Let A be an n×n square matrix. Prove: A and AT have exactly the same eigenvalues.

Proof. Recall that an eigenvalue of a matrix is a root of the matrix’s characteristic equation,
which equates the matrix’s characteristic polynomial to 0. It suffices to show that the characteristic
polynomial of A is the same as that of AT . In other words, we want to show that det(A− λI) =
det(AT − λI). This is true because A− λI = (AT − λI)T .

Problem 3 (Hard). Let A be an n× n square matrix. Prove: A−1 exists if and only if 0 is not
an eigenvalue of A.

Proof. If-Direction. The objective is to show that if 0 is not an eigenvalue of A, then A−1 exists,
namely, the rank of A is n. Suppose, on the contrary, that the rank of A is less than n. Consider
the linear system Ax = 0 where x is an n × 1 matrix. The hypothesis that rank A < n indicates
that the system has infinitely many solutions. In other words, there exists a non-zero x satisfying
Ax = 0x = 0. This, however, indicates that 0 is an eigenvalue of A, which is a contradiction.

Only-If Direction. The objective is to show that if A−1 exists, then 0 is not an eigenvalue of A.

The existence of A−1 means that the rank of A is n, which in turn indicates that Ax = 0 has a
unique solution x = 0. In other words, there is no non-zero x′ satisfying Ax′ = 0x′, namely, 0 is
not an eigenvalue of A.

Problem 4. Let A be an n× n square matrix such that A−1 exists. Prove: if λ is an eigenvalue
of A, then 1/λ is an eigenvalue of A−1.

Proof. Since λ is an eigenvalue of A, there is a non-zero n× 1 matrix x satisfying

Ax = λx ⇒
A−1Ax = λA−1x ⇒

x = λA−1x ⇒
A−1x = (1/λ)x

which completes the proof.

Problem 5. Prove: if A2 = I, then the eigenvalues of A must be 1 or −1.

Proof. Consider any eigenvalue λ of A, and let x be an arbitrary eigenvector of A corresponding
to λ. Hence, we have:

Ax = λx ⇒
A2x = λAx ⇒
Ix = λAx ⇒
x = λAx

Note that λ(Ax) = λ(λx) = λ2x. Hence, we have

x = λ2x.

As x is not 0, it follows that λ2 = 1, which completes the proof.
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Problem 6. Suppose that λ1 and λ2 are two distinct eigenvalues of matrix A. Furthermore,
suppose that x1 is an eigenvector of A under λ1, and that x2 is an eigenvector of A under λ2.
Prove: there does not exist any real number c such that cx1 = x2.

Proof. Assume, on the contrary, that such a c exists. Since Ax1 = λ1x1, we have A(cx1) =
λ1(cx1), which leads to Ax2 = λ1x2.

On the other hand, Ax2 = λ2x2. Therefore, λ1 = λ2 (remember x2 cannot be 0), giving a
contradiction.

Problem 7. Suppose that λ1 and λ2 are two distinct eigenvalues of matrix A. Furthermore,
suppose that x1 is an eigenvector of A under λ1, and that x2 is an eigenvector of A under λ2.
Prove: x1 + x2 is not an eigenvector of A.

Proof. Assume, on the contrary, that x1 + x2 is an eigenvector under some eigenvalue λ3. This
means that

A(x1 + x2) = λ3(x1 + x2) ⇒
Ax1 + Ax2 = λ3(x1 + x2) ⇒
λ1x1 + λ2x2 = λ3(x1 + x2) ⇒
(λ1 − λ3)x1 = (λ3 − λ2)x2.

As λ1 6= λ2, at least one of λ1 − λ3 and λ3 − λ2 is non-zero. Without loss of generality, suppose
λ3 − λ2 6= 0, which gives:

λ1 − λ3
λ3 − λ2

x1 = x2.

In Problem 6, we already showed that the above is impossible, thus giving a contradiction.
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