Exercises: Line Integral by Length

Problem 1. Let C be the curve from point p(0,0) to point g(1,1) on the parabola y = z2.

Calculate fC xds.

Solution: First, write C into its parametric form: »(t) = [x(t), y(t)] where x(t) = t, and y(t) = t°.
Points p and ¢ are given by ¢ = 0 and 1, respectively. Thus:
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Problem 2. Let C be the line segment from point p(1, 2, 3) to point ¢(8,7,6). Calculate fC 422 ds.
Solution: Vector q—p = [8,7,6] —[1,2,3] = [7, 5, 3] gives the direction of the line segment. Hence,
C' can be written into its parametric form: »(t) = [x(t), y(t), z(t)] where x(t) = 1+ 7¢, y(t) = 2+ 5t,
and z(t) = 3 + 3t. Points p and ¢ are given by t = 0 and ¢ = 1, respectively. Thus:
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Problem 3. Let C be the circle 22 + y?> = 1. Calculate fc yds.

Solution: Introduce the parametric form of C: r(t) = [z(t), y(t)] where x(t) = cos(t) and y(t) =
sin(t). Pick an arbitrary point on C, e.g., p(1,0). Let ¢ = p, i.e., another copy of the same point.



View p as being given by ¢t = 0, and ¢ as being given by ¢t = 2.
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Calculate [,y ds.

Solution. C'is a piecewise-smooth curve. Define:
e (1: the bottom edge of C.
e (y: the right edge of C.
e (5: the top edge of C.

o (y: the left edge of C.
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Next, we compute each integral on the right hand side in turn:
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Cy can be represented as {[z(t) = 1,y(t) =t] | =1 <t < 1}
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We have:




Similarly, we can get:

Therefore, [, yds=0.

Remark. Interestingly, fc yds = 0 can also be inferred directly from the definition of line integral
by arc length. Hint: break each edge into subintervals, and argue that each subinterval will get
“canceled” by another subinterval in the summation that defines the line integral.

Problem 5. Let C be the intersection of two surfaces: sphere 22 4+ y? + 22 = 3 and plane z = v.
Calculate [ z*ds.

Solution: Observe first that the intersection is a circle, which is a closed curve. Introduce

z(t) = y(t) = %cos(t) and z(t) = v/3sin(t). Pick a point on C by setting ¢t = 0, which gives

p(\/3/2,1/3/2,0). What is the smallest ¢ that will give the same p? Clearly, the answer is t = 2.
Define ¢ = p, and view ¢ as being given by ¢ = 27x. Thus, C' can be regarded as the trail of
[z(t),y(t), 2(t)] as t grows from 0 to 2.
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